若關(guān)于實(shí)數(shù)x的不等式|x-5|+|x+3|<a無解,則實(shí)數(shù)a的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:填空題
若直線l與圓x2+(y+1)2=4相交于A,B兩點(diǎn),且線段AB的中點(diǎn)坐標(biāo)是(1,-2),則直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:填空題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=5,S9=99,則數(shù)列的前n項(xiàng)和Tn=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講練習(xí)卷(解析版) 題型:解答題
設(shè)不等式|x-2|<a(a∈N*)的解集為A,且∈A,∉A.
(1)求a的值;
(2)求函數(shù)f(x)=|x+a|+|x-2|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題
已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:解答題
在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos =2.
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn).已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題
曲線C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
(A)f(x)+|g(x)|是偶函數(shù)
(B)f(x)-|g(x)|是奇函數(shù)
(C)|f(x)|+g(x)是偶函數(shù)
(D)|f(x)|-g(x)是奇函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com