設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
(1)y=x-1(2)見解析
【解析】(1)設(shè)f(x)=,則f′(x)=.
所以f′(1)=1,所以L的方程為y=x-1.
(2)證明:令g(x)=x-1-f(x),則除切點(diǎn)之外,
曲線C在直線L的下方等價(jià)于g(x)>0(?x>0,x≠1).g(x)滿足g(1)=0,且
g′(x)=1-f′(x)=.
當(dāng)0<x<1時(shí),x2-1<0,ln x<0,所以g′(x)<0,故g(x)單調(diào)遞減;
當(dāng)x>1時(shí),x2-1>0,ln x>0,所以g′(x)>0,故g(x)單調(diào)遞增.
所以,g(x)>g(1)=0(?x>0,x≠1).所以除切點(diǎn)之外,曲線C在直線L的下方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:選擇題
已知四棱錐P-ABCD的三視圖如圖所示,則此四棱錐的四個(gè)側(cè)面的面積中最大的是( )
A.2 B.3 C. D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題
若關(guān)于實(shí)數(shù)x的不等式|x-5|+|x+3|<a無(wú)解,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長(zhǎng)線交直線CD于點(diǎn)D,E,F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B,E,F,C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過(guò)B,E,F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,D,E分別為△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓于F,G兩點(diǎn),若CF∥AB,證明:
(1)CD=BC;
(2)△BCD∽△GBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>[40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:解答題
已知a,b為常數(shù),若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)f(x)是(-∞,+∞)上的奇函數(shù),且f(x+2)=-f(x),下面關(guān)于f(x)的判定:其中正確命題的序號(hào)為 .
①f(4)=0;
②f(x)是以4為周期的函數(shù);
③f(x)的圖象關(guān)于x=1對(duì)稱;
④f(x)的圖象關(guān)于x=2對(duì)稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=單調(diào)遞減,那么實(shí)數(shù)a的取值范圍是( )
(A)(0,1) (B)(0,)
(C)[,) (D)[,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com