16.已知函數(shù)f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0).
(I)若f(x+θ)是最小正周期為2π的偶函數(shù),求ω及θ的值;
(Ⅱ)若[-$\frac{5π}{3}$,$\frac{π}{3}$]是f(x)的一個遞增區(qū)間,求ω的值.
(Ⅲ)在(Ⅱ)的條件下,若g(x)=f(-π-4x),求函數(shù)g(x)的單調(diào)增區(qū)間和最大值.

分析 (Ⅰ)由條件求得f(x+θ)的解析式,再利用正弦函數(shù)周期性和奇偶性,求得ω及θ值;
(Ⅱ)根據(jù)函數(shù)的單調(diào)區(qū)間求出ω的值即可;
(Ⅲ)求出g(x)的表達式,根據(jù)三角函數(shù)的性質(zhì)求出g(x)的單調(diào)區(qū)間和最大值即可.

解答 解:(Ⅰ)由于f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),
可得f(x+θ)=2$\sqrt{3}$sin[3ω(x+θ)+$\frac{π}{3}$]=2$\sqrt{3}$sin(3ωx+3ωθ+$\frac{π}{3}$),
再根據(jù)f(x+θ)是周期為2π的偶函數(shù),可得 $\frac{2π}{3ω}$=2π,3ωθ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z.
求得ω=$\frac{1}{3}$,θ=kπ+$\frac{π}{6}$,f(x)=2$\sqrt{3}$sin(x+$\frac{π}{3}$).
(Ⅱ)由2kπ-$\frac{π}{2}$≤3ωx+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
得:$\frac{2kπ}{3ω}$-$\frac{5π}{18ω}$≤x≤$\frac{2kπ}{3ω}$+$\frac{π}{18ω}$,
而-$\frac{5π}{3}$≤x≤$\frac{π}{3}$,
故ω=$\frac{1}{6}$;
(Ⅲ)由(Ⅱ)得:f(x)=2$\sqrt{3}$sin($\frac{1}{2}$x+$\frac{π}{3}$),
∴g(x)=f(-π-4x)=2$\sqrt{3}$sin[$\frac{1}{2}$(-π-4x)+$\frac{π}{3}$]=-2$\sqrt{3}$sin(2x+$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,得:kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
故g(x)在[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]遞增,最大值是2$\sqrt{3}$.

點評 本題考查了三角函數(shù)問題,考查函數(shù)的單調(diào)性和最值問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知x,y的取值如表:
x01234
y11.33.25.68.9
若依據(jù)表中數(shù)據(jù)所畫的散點圖中,所有樣本點(xi,yi)(i=1,2,3,4,5)都在曲線y=$\frac{1}{2}$x2+a附近波動,則a=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若函數(shù)y=f(x)的定義域D中恰好存在n個值x1,x2,…,xn滿足f(-xi)=f(xi)(i=1,2,…,n),則稱函數(shù)y=f(x)為定義域D上的“n度局部偶函數(shù)”.
已知函數(shù)g(x)=$\left\{\begin{array}{l}{|sin(\frac{π}{2}x)|-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定義域為(-∞,0)∪(0,+∞)上的“3度局部偶函數(shù)”,則a的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在△ABC中,點D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面積為7,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex+6x,g(x)=$\frac{a}{x-3}$+6.
(Ⅰ)若x>3時f(x)>g(x)恒成立,求a的取值范圍;
(Ⅱ)討論函數(shù)F(x)=f(x)-g(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,有一塊半徑為R的半圓形鋼板,計劃將其剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點在圓周上.
(1)試將該梯形的周長y表示成腰長x的函數(shù);
(2)腰長為多少時,該梯形的周長最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,與函數(shù)f(x)=$\frac{{2}^{x}-{2}^{-x}}{{2}^{x}+{2}^{-x}}$的單調(diào)性與奇偶性都相同的是( 。
A.y=sinxB.y=x3-xC.y=2xD.y=lg(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.y=cosx的圖象相當于y=sinx的圖象向左移動(  )
A.B.πC.$\frac{3π}{2}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知A(0,0),B($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),C($\frac{π}{4}$,1),D($\frac{π}{2}$,0),函數(shù)f(x)=sin(ωx)的圖象經(jīng)過且僅經(jīng)過上面四個點中的三個,則正整數(shù)ω的最小值為4.

查看答案和解析>>

同步練習冊答案