20.已知直線l1:4x-3y+6=0和直線l2:x=0,拋物線y2=4x上一動點(diǎn)P到直線l1和直線l2的距離之和的最小值是( 。
A.1B.2C.3D.4

分析 拋物線y2=4x上一動點(diǎn)P到直線l1和直線l2的距離之和轉(zhuǎn)化為:拋物線y2=4x上一動點(diǎn)P到直線l1和直線x=1的距離之和,x=-1是拋物線y2=4x的準(zhǔn)線,則P到x=-1的距離等于PF,拋物線y2=4x的焦點(diǎn)F(1,0)過P作4x-3y+6=0垂線,和拋物線的交點(diǎn)就是P,所以點(diǎn)P到直線l1:4x-3y+6=0的距離和到直線l2:x=-1的距離之和的最小值就是F(1,0)到直線4x-3y+6=0距離.

解答 解:x=-1是拋物線y2=4x的準(zhǔn)線,則P到x=-1的距離等于PF,
拋物線y2=4x的焦點(diǎn)F(1,0)
過P作4x-3y+6=0垂線,和拋物線的交點(diǎn)就是P,
所以點(diǎn)P到直線l1:4x-3y+6=0的距離和到直線l2:x=-1的距離之和的最小值
就是F(1,0)到直線4x-3y+6=0距離,
所以最小值=$\frac{|4-0+6|}{\sqrt{{4}^{2}+{(-3)}^{2}}}$=2.
直線l1:4x-3y+6=0和直線l2:x=0,拋物線y2=4x上一動點(diǎn)P到直線l1和直線l2的距離之和的最小值是:2-1=1
故選:A.

點(diǎn)評 本題考查點(diǎn)到直線的距離公式的求法,是中檔題.解題時要認(rèn)真審題,注意拋物線的性質(zhì)的靈活運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD中(圖1),E是BC的中點(diǎn),DB=2,DC=1,BC=$\sqrt{5}$,AB=AD=$\sqrt{2}$,將(圖1)沿直線BD折起,使二面角A-BD-C成銳二面角且三棱錐A-BDC的體積為$\frac{\sqrt{3}}{6}$.(如圖2)
(1)求證:平面ABC⊥平面BDC;
(2)求直線AE與平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某人有一容積為V,高為a且裝滿了油的直三棱柱形容器,不小心將該容器掉在地上,有兩處破損并發(fā)生滲漏,其位置分別在兩條側(cè)棱上且距下底面高度分別為b、c的地方,且容器蓋也被摔開了(蓋為上底面),為減少油的損失,此人采用破口朝上,傾斜容器的方式拿回家,估計容器內(nèi)的油最理想的剩余量是多少.(容器壁的厚度忽略不計)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若點(diǎn)(16,tanθ)在函數(shù)y=log2x的圖象上,則$\frac{1+cos2θ+8si{n}^{2}θ}{sin2θ}$=(  )
A.$\frac{20\sqrt{3}}{3}$B.$\frac{65}{4}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x5+x3+x的圖象( 。
A.關(guān)于y軸對稱B.關(guān)于直線y=x對稱
C.關(guān)于坐標(biāo)原點(diǎn)對稱D.關(guān)于直線y=-x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線y2=2px(p>0)上有A、B兩點(diǎn),且OA⊥OB,直線AB與x軸相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為(2p,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在正四棱柱ABCD-A1B1C1D1中,∠B1AB=60°
(1)求A1C與平面ABCD所成的角的大;
(2)求異面直線B1C與A1C1所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)a,b,c成等差數(shù)列,點(diǎn)P(-3,2)在動直線ax+by+c=0上的射影為H,點(diǎn)Q(3,3),則線段QH的最大值為$5+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{i-2}{i}$的對應(yīng)點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案