設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖像關(guān)于直對稱,且. (1)求實數(shù)的值 ;(2)求函數(shù)的極值.

(1)(2) ,

解析試題分析:解:(1)因
由題設(shè)條件知        2
    2
(2)知

                  2
所以 ,      2
考點:導(dǎo)數(shù)的運用
點評:主要是根據(jù)導(dǎo)數(shù)判定函數(shù)單調(diào)性,進(jìn)而得到極值,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若存在極值,求的取值范圍;
(2)若,問是否存在與曲線都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù);

(1)若處取極值,求的值;
(2)設(shè)直線將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)時,求曲線處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個極大值和一個極小值,且極大值與極小值的積為,求
值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;(2)求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為元(∈[7,11])時,一年的銷售量為萬件.
(1)求分公司一年的利潤(萬元)與每件產(chǎn)品的售價的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點處的切線為,直線軸相交于點.若點的縱坐標(biāo)恒小于1,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案