設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
(1) 3和-1   (2) (0,1)
(1)當a=1,b=-2時,f(x)=x2-2x-3,
令f(x)=0,得x=3或x=-1.
∴函數(shù)f(x)的零點為3和-1.
(2)依題意,f(x)=ax2+bx+b-1=0有兩個不同實根.
∴b2-4a(b-1)>0恒成立,
即對于任意b∈R,b2-4ab+4a>0恒成立,
所以有(-4a)2-4(4a)<0⇒a2-a<0,所以0<a<1.
因此實數(shù)a的取值范圍是(0,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當x∈[2,4]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用min{a,b,c}表示a,b,c三個數(shù)中的最小值.設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為(  )
A.4B.5
C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx-(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),若為某一三角形的三邊長,則稱為“可構(gòu)造三角形函數(shù)”.已知函數(shù)是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若定義在R上的函數(shù)f(x)滿足f(-x)="f(x)," f(2-x)=f(x),且當x∈[0,1]時,其圖象是四分之一圓(如圖所示),則函數(shù)H(x)= |xex|-f(x)在區(qū)間[-3,1]上的零點個數(shù)為 (     )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)和g(x)分別由下表給出:
x
1
2
3
4
x
1
2
3
4
f(x)
2
3
4
1
g(x)
2
1
4
3
則f(g(1))=____________,滿足g(f(x))=1的x值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為:不超過25kg按0.5元/kg收費,超過25kg的部分按0.8元/kg收費,計算收費的程序框圖如圖所示,則①②處應(yīng)填(  )
A.y=0.8xy=0.5x
B.y=0.5xy=0.8x
C.y=0.8x-7.5y=0.5x
D.y=0.8x+12.5y=0.8x

查看答案和解析>>

同步練習(xí)冊答案