10.已知P(m,n)(m>0,n>0)是f(x)=x3-x+1在點x=0處的切線上一點,則$\frac{1}{m}+\frac{4}{n}$的最小值是(  )
A.2B.4C.7D.9

分析 先根據(jù)導(dǎo)數(shù)的幾何意義求出切線方程,得到m+n=1,再由乘“1”法,根據(jù)基本不等式即可求出答案.

解答 解:f′(x)=3x2-1,f(0)=1,f′(0)=-1,
故切線方程是:y-1=-(x-0),
即x+y-1=0;
將P(m,n)代入方程得:m+n=1,
故$\frac{1}{m}+\frac{4}{n}$=($\frac{1}{m}+\frac{4}{n}$)(m+n)=1+$\frac{n}{m}$+$\frac{4m}{n}$+4≥5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=5+4=9,
故選:D.

點評 本題考查了導(dǎo)數(shù)的幾何意義,以及基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=26,則f′(x)=( 。
A.2B.6C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.當(dāng)正整數(shù)集合A滿足:“若x∈A,則10-x∈A”.則集合A中元素個數(shù)至多有( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱體,左右兩端均為半球形,按照設(shè)計要求中間圓柱體部分的容積為16π立方米,且L≥2r.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為1千元,半球形部分每平方米建造費用為$\frac{c}{2}(c>0)$千元.設(shè)該容器的建造費用為y千元.(圓柱體體積公式為V=πr2l,球的體積公式為$V=\frac{4}{3}π{r^3}$,圓柱側(cè)面積公式為S=2πrl,球的表面積公式為S=4πr2
(1)寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某商場一周內(nèi)被消費者投訴的次數(shù)用ξ表示.據(jù)統(tǒng)計,隨機變量ξ的概率分布列如表,則x的值為(  )
ξ
 
0123
P0.10.32x
 
x
A.0.2B.0.4C.1.5D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從0,1,2,3,4,5這六個數(shù)字中取兩個偶數(shù)和兩個奇數(shù)組成沒有重復(fù)數(shù)字的四位數(shù).試問:
(1)能組成多少個不同的四位數(shù)?
(2)四位數(shù)中,兩個偶數(shù)排在一起的有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2+x-6<0},B={y|y=2x-1,x≤2},則A∩B=( 。
A.(-3,3]B.(-1,3)C.(-3,2]D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x+φ)關(guān)于直線x=$\frac{π}{3}$對稱,求|φ|的最小值;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時,若方程|f(x)|-m=0有4個不同的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是(  )
A.(0,3)B.(1,4)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案