【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若是曲線上的任意一點(diǎn),是曲線上的任意一點(diǎn),求線段的最小值.
【答案】(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;
(2).
【解析】
(1曲線消去參數(shù)t即可得普通方程,曲線利用ρsinθ=y,ρcosθ=x可得的直角坐標(biāo)方程;
(2)可設(shè)點(diǎn),利用點(diǎn)到直線的距離公式及二次函數(shù)最值即可求解.
(1)由,消去參數(shù),得曲線的普通方程為.
將代入到中,得,
即曲線的直角坐標(biāo)方程為.
(2)因?yàn)?/span>是曲線上的任意一點(diǎn),是曲線上的任意一點(diǎn),所以可設(shè)點(diǎn),
線段的最小值即點(diǎn)到直線的距離的最小值,
所以,
當(dāng)時(shí),,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知拋物線上一點(diǎn)到焦點(diǎn)的距離為6,點(diǎn)為其準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為.
(1)求拋物線的方程;
(2)當(dāng)點(diǎn)在軸上時(shí),證明:為等腰直角三角形.
(3)證明:為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)當(dāng)時(shí),判斷函數(shù)在其定義域上的單調(diào)性;
(2)是否存在實(shí)數(shù),使得對(duì)任意的,恒成立?若不存在,請(qǐng)說(shuō)明理由;若存在,求出的值并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】義烏國(guó)際馬拉松賽,某校要從甲乙丙丁等人中挑選人參加比賽,其中甲乙丙丁人中至少有人參加且甲乙不同時(shí)參加,丙丁也不同時(shí)參加,則不同的報(bào)名方案有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長(zhǎng)為,直線與橢圓C交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)若直線與圓相切,證明:為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底);
(2)令,如果圖象與軸交于,,中點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長(zhǎng)寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以兩條長(zhǎng)邊中點(diǎn)連線為折線對(duì)折裁剪分開(kāi)后,可以得到兩張后面序號(hào)大小的紙,比如1張A0紙對(duì)裁后可以得到2張A1紙,1張A1紙對(duì)裁可以得到2張A2紙,依此類(lèi)推.這是因?yàn)?/span>A系列紙張的長(zhǎng)寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長(zhǎng)度為( 。
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(m+2)是冪函數(shù),設(shè)a=log54,b=,c=0.5–0.2,則f(a),f(b),f(c)的大小關(guān)系是
A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)
C.f(c)<f(b)<f(a)D.f(c)<f(a)<f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別是,,,是其左右頂點(diǎn),點(diǎn)是橢圓上任一點(diǎn),且的周長(zhǎng)為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)且斜率不為0的直線交橢圓于,兩個(gè)不同點(diǎn),證明:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com