【題目】對于函數(shù),若存在實數(shù),使成立,則稱的不動點.

1)當(dāng)時,求的不動點;

2)若對于任何實數(shù),函數(shù)恒有兩相異的不動點,求實數(shù)的取值范圍;

3)在(2)的條件下,若的圖象上、兩點的橫坐標(biāo)是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的最小值.

【答案】1)不動點是-12.23

【解析】

1)根據(jù)不動點定義,代入,,即可得一元二次方程,解方程即可求解.

2)令,可得一元二次方程.根據(jù)有兩個相異的實數(shù)根,可知對應(yīng)判別式.即可得關(guān)于的不等式.再由對于任意實數(shù)恒成立,可知對應(yīng)判別式即可求得的取值范圍;

3)根據(jù)題意可設(shè),,即可求得直線的斜率.根據(jù)直線是線段的垂直平分線,可求得的值.設(shè)的中點為,由韋達(dá)定理可得,代入直線即可用表示出.結(jié)合基本不等式即可求得的取值范圍,即可得的最小值.

1)當(dāng),時,

設(shè)為其不動點,即.

.

,.

的不動點是-1,2.

2)由.由已知,此方程有相異二實根,

恒成立,即.

對任意恒成立.

,

,

.

3)因為的圖象上、兩點的橫坐標(biāo)是函數(shù)的不動點,設(shè),,

直線是線段的垂直平分線,

的中點.由(2)知,

上,

.

化簡得

(當(dāng)且僅當(dāng)時,等號成立).

.

因為,所以

綜上可知

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形中,,,為邊的中點,將 沿直線翻折成.為線段的中點,則在翻折過程中,有下列三個命題:

①線段的長是定值;

②存在某個位置,使;

③存在某個位置,使平面.

其中正確的命題有______. (填寫所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當(dāng)時,求不等式的解集;

2)若時,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面ABCD,是正三角形,ACBD的交點為M,又,,點NCD中點.

1)求證:平面PAD

2)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當(dāng)月在售二手房均價(單位:萬元/平方米)的散點圖.(圖中月份代碼1—13分別對應(yīng)2017年1月—2018年1月)

由散點圖選擇兩個模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程分別為,并得到以下一些統(tǒng)計量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費(fèi);房屋均價精確到0.001萬元/平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項稅費(fèi),稅費(fèi)是按房屋的計稅價格進(jìn)行征收.(計稅價格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個人所得稅

(賣方繳納)

首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,. 參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的極值點的個數(shù);

2)當(dāng)時,若存在實數(shù),使得,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若存在極大值,證明:

2)若關(guān)于的不等式在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知定點,點軸上運(yùn)動,點軸上運(yùn)動,點為坐標(biāo)平面內(nèi)的動點,且滿足.

1)求動點的軌跡的方程;

2)過曲線第一象限上一點(其中)作切線交直線于點,連結(jié)并延長交直線于點,求當(dāng)面積取最小值時切點的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案