【題目】棋盤上標(biāo)有第、、、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
【答案】(1)分布列見解析,隨機(jī)變量的數(shù)學(xué)期望為;(2)證明見解析;
(3),.
【解析】
(1)根據(jù)題意得出隨機(jī)變量的可能取值有、、、,利用獨(dú)立重復(fù)試驗(yàn)的概率公式計(jì)算出隨機(jī)變量在相應(yīng)取值時(shí)的概率,可列出隨機(jī)變量的分布列,由此計(jì)算出隨機(jī)變量的數(shù)學(xué)期望;
(2)根據(jù)題意,棋子要到第站,由兩種情況,由第站跳站得到,也可以由第站跳站得到,由此得出,并在該等式兩邊同時(shí)減去,可得出所證等式成立;
(3)結(jié)合(1)、(2)可得,利用累加法求出數(shù)列的通項(xiàng)公式,從而可求出和的值.
(1)由題意可知,隨機(jī)變量的可能取值有、、、.
,,
,.
所以,隨機(jī)變量的分布列如下表所示:
所以,隨機(jī)變量的數(shù)學(xué)期望為;
(2)根據(jù)題意,棋子要到第站,由兩種情況,由第站跳站得到,其概率為 ,也可以由第站跳站得到,其概率為,所以,.
等式兩邊同時(shí)減去得;
(3)由(2)可得,,.
由(2)可知,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
,
,
又,則,
由于若跳到第站時(shí),自動(dòng)停止游戲,故有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過任作一條直線交拋物線于兩點(diǎn),、分別為、在上的射影,為的中點(diǎn),給出下列命題:
(1);(2);(3);
(4)與的交點(diǎn)的軸上;(5)與交于原點(diǎn).
其中真命題的序號(hào)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由兩個(gè)全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計(jì) | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計(jì) | 50 | 50 | 100 |
Ⅰ從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
Ⅱ根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時(shí)期的數(shù)學(xué)成就,書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個(gè)陽馬與一個(gè)鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,且當(dāng)n2時(shí),
(1)若=1,證明數(shù)列{a2n1}是等差數(shù)列;
(2)若=2.①設(shè),求數(shù)列{bn}的通項(xiàng)公式;②設(shè),證明:對于任意的p,m N *,當(dāng)p m,都有 Cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,過左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為上一個(gè)動(dòng)點(diǎn),過點(diǎn)與橢圓只有一個(gè)公共點(diǎn)的直線為,過點(diǎn)與垂直的直線為,求證:與的交點(diǎn)在定直線上,并求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個(gè)長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重(單位:kg)情況如三維餅圖(1)所示,經(jīng)過四個(gè)月的健身后,他們的體重情況如三維餅圖(2)所示.
對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論正確的是( )
A.他們健身后,體重在區(qū)間內(nèi)的人增加了2個(gè)
B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒有改變
C.他們健身后,20人的平均體重大約減少了
D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com