3.己知α為第二象限角,cosa=-$\frac{3}{5}$,則sin2α=( 。
A.-$\frac{24}{25}$B.-$\frac{12}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinα,進(jìn)而利用二倍角的正弦函數(shù)公式即可計算得解.

解答 解:∵α為第二象限角,cosα=-$\frac{3}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴sin2α=2sinαcosα=2×(-$\frac{3}{5}$)×$\frac{4}{5}$=-$\frac{24}{25}$.
故選:A.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的k=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的前n項和為Sn,且a2=1,S5=15,數(shù)列{bn}的前n項和Tn滿足Tn=(n+5)an
(1)求an
(2)求數(shù)列{$\frac{1}{{a}_{n}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若復(fù)數(shù)z=(1+i)•i2(i表示虛數(shù)單位),則$\overline{z}$=-1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx-ex+1
(Ⅰ)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)證明:f(x)<sinx在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.我們常用函數(shù)y=f(x)的函數(shù)值的改變量與自變量的改變量的比值來表示平均變化率,當(dāng)自變量x由x0改變到x+x0時,函數(shù)值的改變量△y等于( 。
A.f(x0+△x)B.f(x0)+△xC.f(x0)•△xD.f(x0+△x)-f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.輪船A和輪船B在上午8時同時離開海港C,兩船航行方向之間的夾角為120°,輪船A與輪船B的航行速度分別為25海里/小時和15海里/小時,則上午12時兩船之間的距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.算籌是中國古代用于計算和運算的若干小棒,漢代(約)算籌數(shù)值如下表:

用算籌表示數(shù)時,從右至左依次先縱后橫交錯排列,若出現(xiàn)斜棒,則表示負(fù)數(shù),如“”表示36,“
”表示-723,函數(shù)f(x)=3xlnx-x3+83的極大值是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左、右焦點分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點O為圓心、a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2,則該雙曲線的漸近線的斜率為±$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案