【題目】多面體,,,,,,,在平面上的射影是線段的中點.

(1)求證:平面;

(2)若,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)過,連接.根據(jù)梯形中位線定理及平行四邊形性質(zhì)可證明,進而證明平面.

2)以點為坐標(biāo)原點建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并分別求得平面和平面的法向量,即可根據(jù)向量的數(shù)量積求得二面角的余弦值.

1)過,連接,如下圖所示:

由梯形中位線知,所以,

,故四邊形是平行四邊形,所以,

平面,平面,所以平面;

2)由平面,平面,又平面,

所以平面平面

以點為坐標(biāo)原點建立空間直角坐標(biāo)系如下圖所示:

,,,,,

,,,

設(shè)平面的法向量為,則,即,

,

設(shè)平面的法向量為,則,即,

,,所以,

因為所求二面角為銳角,所以其余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,點在橢圓.

1)求橢圓的方程;

2)圓是以橢圓的焦距為直徑的圓,點是橢圓的右頂點,過點的直線與圓相交于,兩點,過點的直線與橢圓相交于另一點,若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形,且,,點是線段的中點,過的平面交平面,且,,且,,.

1)求證:;

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體中,過作直線,若直線與平面中的直線所成角的最小值為,且直線與直線所成角為,則滿足條件的直線的條數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面,為正方形,,分別為的中點.

(1)求證:直線平面;

(2)求直線與直線所成角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法:

①三條直線兩兩相交,則他們一定共面.

②存在兩兩相交的三個平面可以把空間分成9部分.

③如圖是正方體的平面展開圖,則在這個正方體中,一定有平面且平面平面.

④四面體所有的棱長都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.

其中正確的是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把一個均勻的正方體骰子拋擲兩次,觀察出現(xiàn)的點數(shù),記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為,設(shè)直線,直線.

1)求直線和直線沒有交點的概率;

2)求直線和直線的交點在第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的對稱軸為坐標(biāo)軸,焦點在軸上,離心率為,且經(jīng)過點.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點,且,,若原點在以為直徑的圓外,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)令

當(dāng)時,求函數(shù)在點處的切線方程;

時,恒成立,求的所有取值集合與的關(guān)系;

(Ⅱ)記,是否存在,使得對任意的實數(shù),函數(shù)上有且僅有兩個零點?若存在,求出滿足條件的最小正整數(shù),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案