【題目】已知函數(shù)(,,為常數(shù)),當(dāng)時(shí),只有一個(gè)實(shí)根;當(dāng)時(shí),只有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①和有一個(gè)相同的實(shí)根;
②和有一個(gè)相同的實(shí)根;
③的任一實(shí)根大于的任一實(shí)根;
④的任一實(shí)根小于的任一實(shí)根.
其中真命題的序號(hào)是______.
【答案】①②④
【解析】
根據(jù)方程根的分布情況,繪制出三次函數(shù)的圖像,然后根據(jù)三次函數(shù)圖像與直線的交點(diǎn)情況判斷命題是否為真命題.
由題中條件可以推出,函數(shù)的極大值為,極小值為,
函數(shù)的圖像先增加后減小再增加,繪制出函數(shù)的圖像如下圖所示,
對(duì)于命題①,②,根據(jù)的圖像在極值點(diǎn)處的,
發(fā)現(xiàn)分別與,有一個(gè)相同的實(shí)數(shù)根,
故命題①,②為真命題,
對(duì)于命題③,根據(jù)的圖像與直線,和的交點(diǎn),
在函數(shù)單調(diào)遞減區(qū)間的交點(diǎn)不滿足命題,
故命題③為假命題,
對(duì)于命題④,根據(jù)的圖像與直線,和的交點(diǎn),
可知交點(diǎn)滿足命題,故命題④為真命題.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,離心率為的橢圓過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線上存在點(diǎn),且過點(diǎn)的橢圓的兩條切線相互垂直,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2·cosB-sin(A-B)sinB+cos(A+C)=-.
(1)求cos A的值;
(2)若a=4,b=5,求在方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)(的值精確到0.01);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過8.5小時(shí) | |
理工類專業(yè) | 40 | 60 |
非理工類專業(yè) |
附:().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<> | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中,四邊形為菱形,且,為的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com