【題目】拋物線:,直線的斜率為2.
(Ⅰ)若與相切,求直線的方程;
(Ⅱ)若與相交于,,線段的中垂線交于,,求的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(1)設直線的方程為,將直線與拋物線的方程聯(lián)立,利用求出的值,從而得出直線的方程;
(2)設點、、、,設直線的方程為,將直線的方程與拋物線的方程聯(lián)立,由得出的范圍,并列出韋達定理,求出并求出線段的中點坐標,然后得出線段中垂線的方程,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理并求出,然后得出的表達式,結(jié)合不等式的性質(zhì)求出這個代數(shù)式的取值范圍.
解:(1)設直線的方程為,聯(lián)立直線拋物線的方程,得,
,所以,,
因此,直線的方程為;
(2)設直線的方程為,設點、、、,
聯(lián)立直線與拋物線的方程,得,,所以,.
由韋達定理得,.
所以,,
因為線段的中點為,所以,直線的方程為,
由,得,由韋達定理得,,
所以,,
所以,,
所以,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,為常數(shù)),當時,只有一個實根;當時,只有3個相異實根,現(xiàn)給出下列4個命題:
①和有一個相同的實根;
②和有一個相同的實根;
③的任一實根大于的任一實根;
④的任一實根小于的任一實根.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:(a>0),過點P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,若過點且斜率為1的直線與拋物線交于 兩點,且.
(1)求拋物線的方程;
(2)若平行于的直線與拋物線相切于點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市有戶籍的人口共萬,其中老人(年齡歲及以上)人數(shù)約有萬,為了了解老人們的健康狀況,政府從老人中隨機抽取人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:
(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進一步了解他們的生活狀況,則兩個群體中各應抽取多少人?
(2)估算該市歲以上長者占全市戶籍人口的百分比;
(3)政府計劃為歲及以上長者或生活不能自理的老人每人購買元/年的醫(yī)療保險,為其余老人每人購買元/年的醫(yī)療保險,不可重復享受,試估計政府執(zhí)行此計劃的年度預算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的方程為,過點且斜率為的直線與曲線相切于點.
(1)以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,求曲線的極坐標方程和點的極坐標;
(2)若點在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)集合,或,對于任意,定義,對任意,定義,記為集合的元素個數(shù),求的值;
(2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中,若存在,求出所有的,若不存在,說明理由;
(3)已知當時,有,根據(jù)此信息,若對任意,都有,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓的左、右焦點,橢圓過點.
(1)求橢圓的方程;
(2)過點的直線(不過坐標原點)與橢圓交于,兩點,且點在軸上方,點在軸下方,若,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com