【題目】橢圓,橢圓上一點(diǎn)到左焦點(diǎn)的距離的取值范圍為.

1)求橢圓的方程;

2,,分別與橢圓相切,且,,,如圖,,,,圍成的矩形的面積記為,求的取值范圍.

【答案】12

【解析】

1)根據(jù)橢圓的左、右頂點(diǎn)到橢圓的左焦點(diǎn)的距離分別為最小值和最大值列出方程組,求解即可;

2)聯(lián)立直線與橢圓的方程得到一元二次方程,根據(jù)韋達(dá)定理結(jié)合矩形的面積公式得到面積的表達(dá)式,結(jié)合基本不等式求解面積的取值范圍.

(1)因?yàn)闄E圓上一點(diǎn)到左焦點(diǎn)的距離的取值范圍是,

設(shè)橢圓的焦距為,所以解得

所以,故橢圓的方程為.

2)當(dāng),軸或,軸時(shí),;

當(dāng),,,斜率都存在時(shí),設(shè),,,,

其中,且,.

將直線的方程與橢圓方程聯(lián)立得

.

,得,∴,同理可得

,

.

,∴,

,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

,

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線l與曲線C相交于M,N兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù)的敘述正確的為( )

A.函數(shù)有三個(gè)零點(diǎn)

B.點(diǎn)(10)是函數(shù)圖象的對(duì)稱中心

C.函數(shù)的極大值點(diǎn)為

D.存在實(shí)數(shù)a,使得函數(shù)為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B是拋物線上的兩點(diǎn),且在x軸兩側(cè),若AB的中點(diǎn)為Q,分別過(guò)A,B兩點(diǎn)作T的切線,且兩切線相交于點(diǎn)P.

1)求證:直線PQ平行于x軸;

2)若直線AB經(jīng)過(guò)拋物線T的焦點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來(lái)報(bào)廢的出租車,現(xiàn)有采購(gòu)成本分別為萬(wàn)元/輛和萬(wàn)元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:

使用壽命年數(shù)

5

6

7

8

總計(jì)

型出租車()

10

20

45

25

100

型出租車()

15

35

40

10

100

1)填寫下表,并判斷是否有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

使用壽命不高于

使用壽命不低于

總計(jì)

總計(jì)

2)從的車型中各隨機(jī)抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學(xué)期望;

3)根據(jù)公司要求,采購(gòu)成本由出租公司負(fù)責(zé),平均每輛出租車每年上交公司萬(wàn)元,其余維修和保險(xiǎn)等費(fèi)用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤(rùn)作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購(gòu)哪款車型?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一,為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位考察了甲乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對(duì)兩種生產(chǎn)方式加工的產(chǎn)品質(zhì)量進(jìn)行測(cè)試并打分對(duì)比,得到如下數(shù)據(jù):

生產(chǎn)方式甲

分值區(qū)間

頻數(shù)

20

30

100

40

10

生產(chǎn)方式乙

分值區(qū)間

頻數(shù)

25

35

60

50

30

其中產(chǎn)品質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間上的為特優(yōu)品,指標(biāo)在區(qū)間上的為一等品,指標(biāo)在區(qū)間上的為二等品.

1)用事件表示“按照生產(chǎn)方式甲生產(chǎn)的產(chǎn)品為特優(yōu)品”,估計(jì)的概率;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“特優(yōu)品”與生產(chǎn)方式有關(guān)?

特優(yōu)品

非特優(yōu)品

生產(chǎn)方式甲

生產(chǎn)方式乙

3)根據(jù)打分結(jié)果對(duì)甲乙兩種生產(chǎn)方式進(jìn)行優(yōu)劣比較.

附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的最大值為.

1)求的解析式;

2)討論的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》第七章“盈不足”中有一道兩鼠穿墻問(wèn)題:有厚墻尺,兩只老鼠從墻的兩邊相對(duì)分別打洞穿墻大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.問(wèn)兩天后,兩鼠間距_______尺,兩鼠相遇時(shí),大鼠共穿了______尺墻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,BC的對(duì)邊分別為a,b,c,已知2a2bcosC+csinB

(Ⅰ)求tanB;

(Ⅱ)若C,ABC的面積為6,求BC

查看答案和解析>>

同步練習(xí)冊(cè)答案