如圖,圓的直徑延長線上一點,,割線交圓于點,,過點的垂線,交直線于點,交直線于點.
(1)求證:;
(2)求的值.
(1)證明見解析;(2)24.

試題分析:
解題思路:(1)利用四點共圓的性質(zhì)得出兩角線段;(2)利用三角形相似和圓內(nèi)接四邊形的性質(zhì)進行求解.
規(guī)律總結(jié):直線與圓的位置關(guān)系,是平面幾何問題的常見題型,常考知識由:圓內(nèi)接四邊形、切割線定理、相似三角形、全等三角形等.
試題解析:解法1:(1)連接,則,
、、、四點共圓.
.
、、四點共圓,∴
.                             
,
(2)∴、、四點共圓,                              
,又,  
.                          
解法2:(1)連接,則,又
,
,∴.
(2)∵,,
,∴,
,              
又∵,               
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,AD是中線,P為AD上一點,CF∥AB,BP延長線交AC、CF于E、F,求證:PB2=PE·PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點P(-3,0)且傾斜角為30°直線和曲線
x=t+
1
t
y=t-
1
t
(t為參數(shù))相交于A、B兩點.則線段AB的長為( 。
A.
4
3
51
B.
17
C.
51
D.2
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線y2=4x的焦點作傾斜角為
π
3
的直線與拋物線交于點A、B,則|AB|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=它(a>b>0)的短軸長為2,離心率為
2
2

(它)求橢圓C的方程;
(2)若過點M(2,0)的引斜率為k的直線與橢圓C相交于兩點G、H,設(shè)m為橢圓C上一點,且滿足
OG
+
OH
=t
Om
(O為坐標原點),當(dāng)|
mG
-
mH
|<
2
5
3
時,求實數(shù)t的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點為F,點K(-1,0)為直線l與拋物線C準線的交點.直線l與拋物線C相交于A,B兩點,點A關(guān)于x軸的對稱點為D.
(1)求拋物線C的方程;
(2)設(shè)
FA
FB
=
8
9
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是圓的直徑,是圓的切線,切點為平行于弦,若,,則    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。 
A.若兩個角互補,則這兩個角是鄰補角;
B.若兩個角相等,則這兩個角是對頂角
C.若兩個角是對頂角,則這兩個角相等;
D.以上判斷都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2012•廣東)(幾何證明選講選做題)如圖,圓O中的半徑為1,A、B、C是圓周上的三點,滿足∠ABC=30°,過點A作圓O的切線與 O C 的延長線交于點P,則圖PA= _________ 

查看答案和解析>>

同步練習(xí)冊答案