如圖,是圓的直徑,是圓的切線,切點(diǎn)為平行于弦,若,,則    .
4

試題分析:由于,,而,因此,,
,
,,故,由于切圓于點(diǎn),易知,由勾股定理可得,因此.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓的直徑,延長(zhǎng)線上一點(diǎn),,割線交圓于點(diǎn),,過(guò)點(diǎn)的垂線,交直線于點(diǎn),交直線于點(diǎn).
(1)求證:;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,半圓的直徑的長(zhǎng)為4,點(diǎn)平分弧,過(guò)的垂線交,交
(1)求證:
(2)若的角平分線,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,外一點(diǎn),是切線,為切點(diǎn),割線相交于,,的中點(diǎn),的延長(zhǎng)線交于點(diǎn).證明:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A是橢圓C的短軸左頂點(diǎn),過(guò)A點(diǎn)作斜率為-1的直線交橢圓于B點(diǎn),點(diǎn)P(1,0),且BPy軸,△APB的面積為
9
2

(1)求橢圓C的方程;
(2)在直線AB上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過(guò)M的雙曲線E的實(shí)軸最長(zhǎng),并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y2=4x上一定點(diǎn)P(x0,2),直線l的一個(gè)方向向量
d
=(1,-1)

(1)若直線l過(guò)P,求直線l的方程;
(2)若直線l不過(guò)P,且直線l與拋物線交于A,B兩點(diǎn),設(shè)直線PA,PB的斜率為kPA,kPB,求kPA+kPB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0),F2(
2
,0)

(1)若橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F2
|=4,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過(guò)點(diǎn)P(0,t)(t<0)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為2
3
,求P點(diǎn)的坐標(biāo);
(3)已知m+n=-
cosθ
sinθ
,mn=-
3
sinθ
(m≠n,θ∈
(0,π)),是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)(m,m2),(n,n2)的直線的最短距離dmin=
a2+b2-b
.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,E為CD上一點(diǎn),DE∶EC=2∶3,連接AE,BE,BD,且AE,BD交于點(diǎn)F,則SDEF∶SEBF∶SABF=(  )
A.4∶10∶25B.4∶9∶25
C.2∶3∶5D.2∶5∶25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,圓O上一點(diǎn)C在直徑AB上的射影為D,AD=2,AC=2,則AB=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案