分析:(1)根據(jù)T
5=T
3+2b
5 ,求得 b
4=b
5,得到公比 a
1=
=1,再由當(dāng)n≥2時,a
n=s
n-s
n-1 可得數(shù)列{a
n}是以1為首項,以4為公差的等差數(shù)列,由此求得數(shù)列{a
n}的通項公式.
(2)用裂項法求得 M
n =
(1-
)<
,再由數(shù)列{ M
n }是增數(shù)列,可得 M
n≤M
1=
,從而命題得證.
解答:解:(1)∵等比數(shù)列{b
n}的前n項和為T
n,公比為a
1,且T
5=T
3+2b
5 ,∴b
4+b
5=2b
5,
∴b
4=b
5,∴公比 a
1=
=1,故等比數(shù)列{b
n}是常數(shù)數(shù)列.
數(shù)列{a
n}的前n項和S
n滿足:S
n=na
n-2n(n-1),當(dāng)n≥2時,
a
n=s
n-s
n-1=na
n-2n(n-1)-[na
n-1-2(n-1)(n-2)],∴a
n-a
n-1=4 (n≥2).
∴數(shù)列{a
n}是以1為首項,以4為公差的等差數(shù)列,a
n=4n-3.
(2)∵數(shù)列{
}的前n項和為M
n,
=
=
=
(-),
∴M
n =
[1-
+
-+
-+…+
-]=
(1-
)<
.
再由數(shù)列{ M
n }是增數(shù)列,∴M
n≥M
1=
.
綜上可得,
≤M
n<
.
點評:本題主要考查數(shù)列的遞推公式的應(yīng)用,用放縮法證明不等式,屬于難題.