【題目】某社區(qū)為了解居民喜歡中華傳統(tǒng)文化是否與年齡有關(guān),隨機(jī)調(diào)查了60位居民,相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表所示,

喜歡

不喜歡

合計(jì)

大于45歲

26

6

32

25歲至45歲

13

15

28

合計(jì)

39

21

60

(Ⅰ)是否有99.5%以上的人把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān)?

(Ⅱ)按年齡采用分層抽樣的方法從喜歡中華傳統(tǒng)文化的受調(diào)查居民中隨機(jī)抽取6人作進(jìn)一步了解,若從這6位居民中任選2人,求這2人的年齡均大于45歲的概率.

附:

0.025

0.010

0.005

0,001

5.024

6.635

7.879

10.828

【答案】(1) 有99.5%以上的把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān);

(2) .

【解析】分析:(Ⅰ)根據(jù)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;

(Ⅱ)按年齡采用分層抽樣方法求出大于45歲和不大于45歲應(yīng)抽取的人數(shù),用列舉法計(jì)算所求的概率值.

詳解:(Ⅰ)

故有99.5%以上的把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān);

(Ⅱ)從6人中任選2人,共15種不同結(jié)果,其中大于45歲的4人,25歲至45歲的2人,故選到的2人均大于45歲的不同結(jié)果有6種,故所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn),分別為橢圓的左右頂點(diǎn),點(diǎn)上,且面積的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的左焦點(diǎn),點(diǎn)在直線上,過(guò)的垂線交橢圓兩點(diǎn).證明:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如表所示((噸)為買進(jìn)蔬菜的數(shù)量,(天)為銷售天數(shù)):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)根據(jù)上表數(shù)據(jù)在所給坐標(biāo)系中繪制散點(diǎn)圖,并用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)(Ⅰ)中的計(jì)算結(jié)果,該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,預(yù)計(jì)需要銷售多少天?

(參考數(shù)據(jù)和公式:,, ,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競(jìng)賽成績(jī)(滿分100分)的莖葉圖,

其中有一個(gè)數(shù)字模糊不清,圖中用表示,規(guī)定成績(jī)不低于80分為優(yōu)秀.

(1)已知該12位同學(xué)競(jìng)賽成績(jī)的中位數(shù)為78,求圖中的值;

(2)從該12位同學(xué)中隨機(jī)選3位同學(xué),進(jìn)行競(jìng)賽試卷分析,

設(shè)其中成績(jī)優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)證明是等比數(shù)列,并求的通項(xiàng)公式;

(2)求;

(3)設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個(gè)公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為16.9萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬(wàn)元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案