10.已知數(shù)列{an}的通項(xiàng)公式為an=(-1)n(2n-1),則a1+a2+…+a10=10.

分析 由a1+a2+…+a10=-1+3-5+7-9+11-13+15-17+19,能求出結(jié)果.

解答 解:∵數(shù)列{an}的通項(xiàng)公式為${a_n}={(-1)^n}(2n-1)$,
∴a1+a2+…+a10
=-1+3-5+7-9+11-13+15-17+19
=2+2+2+2+2
=10.
故答案為:10.

點(diǎn)評(píng) 本題考查數(shù)列的前10項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意通項(xiàng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓M:x2+y2-x-6y+c=0的圓心為M,與直線l:x+2y-3=0的兩個(gè)交點(diǎn)P,Q.
(Ⅰ)問c取何值時(shí),滿足MP⊥MQ;
(Ⅱ)已知O是坐標(biāo)原點(diǎn),問c取何值時(shí),滿足OP⊥OQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在長(zhǎng)方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是棱AB,BC,CC1的中點(diǎn),P,Q,R分別在棱C1D1,A1D1,A1A上,且$\frac{{D}_{1}Q}{Q{A}_{1}}$=$\frac{AR}{R{A}_{1}}$=$\frac{{D}_{1}P}{P{C}_{1}}$=$\frac{1}{3}$.求證:平面EFG∥平面PQR.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.己知角α的頂點(diǎn)在原點(diǎn),始邊與x軸正半軸重合,終邊為射線4x+3y=0(x>0),sinα(sinα+cotα)+cos2α的值是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{8}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\frac{1}{3}$x3-ax2-4在(3,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍為(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.f(x)=ax+sinx是R上的增函數(shù),則實(shí)數(shù)a的范圍是( 。
A.(-∞,1]B.(-∞,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=loga(x-1)+8(a>0且a≠1)的圖象恒過(guò)定點(diǎn)P,P在冪函數(shù)f(x)的圖象上,則f(3)=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=1-2sin2ωx的周期是函數(shù)g(x)=sin4x的周期的2倍,則ω=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.關(guān)于x的方程x2-(m+3)x+m+3=0有兩個(gè)不相等的正實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案