已知函數f(x)=ex-e-x(x∈R且e為自然對數的底數).
(1)判斷函數f(x)的奇偶性與單調性;
(2)是否存在實數t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
(1) f(x)是奇函數 (2) 存在實數t=-,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立
【解析】(1)∵f(x)=ex-x,且y=ex是增函數,
y=-x是增函數,∴f(x)是增函數.
由于f(x)的定義域為R,且f(-x)=e-x-ex=-f(x),
∴f(x)是奇函數.
(2)由(1)知f(x)是增函數和奇函數,
∴f(x-t)+f(x2-t2)≥0對一切x∈R恒成立
?f(x2-t2)≥f(t-x)對一切x∈R恒成立
?x2-t2≥t-x對一切x∈R恒成立
?t2+t≤x2+x對一切x∈R恒成立
?2≤對一切x∈R恒成立
?2≤0?t=-.
即存在實數t=-,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立.
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題2第3課時練習卷(解析版) 題型:選擇題
下面是關于復數z=的四個命題:
p1:|z|=2,p2:z2=2i,
p3:z的共軛復數為1+i,p4:z的虛部為-1.
其中的真命題為( )
A.p1,p3 B.p1,p2
C.p2,p4 D.p3,p4
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題1第5課時練習卷(解析版) 題型:選擇題
設函數f(x)的定義域為R,x0(x0≠0)是f(x)的極大值點,以下結論一定正確的是( )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的極小值點
C.-x0是-f(x)的極小值點
D.-x0是-f(-x)的極小值點
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題1第3課時練習卷(解析版) 題型:解答題
設f(x)=|lg x|,a,b為實數,且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿足f(a)=f(b)=2f,
求證:a·b=1,>1.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題1第3課時練習卷(解析版) 題型:選擇題
如果一個點是一個指數函數和一個對數函數的圖象的交點,那么稱這個點為“好點”.下列四個點P1(1,1),P2(1,2),P3,P4(2,2)中,“好點”的個數為( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
已知函數f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16 B.-16
C.a2-2a-16 D.a2+2a-16
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(文)二輪專題復習與測試專題1第1課時練習卷(解析版) 題型:填空題
已知在實數a,b滿足某一前提條件時,命題“若a>b,則<”及其逆命題、否命題和逆否命題都是假命題,則實數a,b應滿足的前提條件是________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學理復習方案二輪作業(yè)手冊新課標·通用版專題四練習卷(解析版) 題型:解答題
已知n∈N*,數列{dn}滿足dn=,數列{an}滿足an=d1+d2+d3+…+d2n.又知數列{bn}中,b1=2,且對任意正整數m,n,.
(1)求數列{an}和數列{bn}的通項公式;
(2)將數列{bn}中的第a1項,第a2項,第a3項,…,第an項刪去后,剩余的項按從小到大的順序排成新數列{cn},求數列{cn}的前2013項和T2013.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學理復習方案二輪作業(yè)手冊新課標·通用版專題八練習卷(解析版) 題型:選擇題
已知函數f(x)=若函數g(x)=f(x)-m有三個不同的零點,則實數m的取值范圍為( )
A.-,1 B.-,1 C.-,0 D.-,0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com