設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,x0(x0≠0)是f(x)的極大值點(diǎn),以下結(jié)論一定正確的是( )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的極小值點(diǎn)
C.-x0是-f(x)的極小值點(diǎn)
D.-x0是-f(-x)的極小值點(diǎn)
D
【解析】不妨取函數(shù)f(x)=x3-3x,則f′(x)=3(x-1)(x+1),易判斷x0=-1為f(x)的極大值點(diǎn),但顯然f(x0)不是最大值,故排除A.
因?yàn)?/span>f(-x)=-x3+3x,f′(-x)=-3(x+1)(x-1),易知,-x0=1為f(-x)的極大值點(diǎn),故排除B;
又-f(x)=-x3+3x,[-f(x)]′=-3(x+1)(x-1),易知,-x0=1為-f(x)的極大值點(diǎn),故排除C;
∵-f(-x)的圖象與f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,由函數(shù)圖象的對(duì)稱性可得-x0應(yīng)為函數(shù)-f(-x)的極小值點(diǎn).故D正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=15,S5=55,則數(shù)列{an}的公差是( )
A. B.4 C.-4 D.-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
對(duì)于集合{a1,a2,…,an}和常數(shù)a0,定義:ω=
為集合{a1,a2,…,an}相對(duì)a0的“正弦方差”,則集合相對(duì)a0的“正弦方差”為( )
A. B. C. D.與a0有關(guān)的一個(gè)值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知sin α-cos α=,α∈(0,π),則tan α=( )
A.-1 B.- C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)f(x)=aln x++x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第4課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第4課時(shí)練習(xí)卷(解析版) 題型:選擇題
設(shè)關(guān)于x,y的不等式組表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0),滿足x0-2y0=2.求得m的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題
{an}為首項(xiàng)為正數(shù)的遞增等差數(shù)列,其前n項(xiàng)和為Sn,則點(diǎn)(n,Sn)所在的拋物線可能為( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com