【題目】有限數(shù)列同時滿足下列兩個條件:

對于任意的),

對于任意的),,三個數(shù)中至少有一個數(shù)是數(shù)列中的項.[

1)若,且,,,,求的值;

2)證明:不可能是數(shù)列中的項;

3)求的最大值.

【答案】1;(2)見解析;(3的最大值為

【解析】

1)由,得

,當,,時.,,中至少有一個是數(shù)列,,,中的項,但,故,解得

經(jīng)檢驗,當時,符合題意.

2)假設是數(shù)列中的項,由可知:6,1015中至少有一個是數(shù)列中的項,則有限數(shù)列的最后一項,且

,

對于數(shù),由可知:;對于數(shù),由可知: 6

所以,這與矛盾.

所以不可能是數(shù)列中的項.

3的最大值為,證明如下:

1)令,則符合、

2)設符合,則:

中至多有三項,其絕對值大于1

假設中至少有四項,其絕對值大于1,不妨設,,中絕對值最大的四項,其中

則對,,,故,均不是數(shù)列中的項,即是數(shù)列中的項.

同理:也是數(shù)列中的項.

,

所以

所以,這與矛盾.

中至多有三項,其絕對值大于0且小于1

假設中至少有四項,其絕對值大于0且小于1,類似()得出矛盾.

中至多有兩項絕對值等于1

中至多有一項等于0

綜合(),(),(),()可知中至多有9項.

14

由(1),(2)可得,的最大值為9

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商場營銷人員對某商品進行市場營銷調查,發(fā)現(xiàn)每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過統(tǒng)計得到下表:

回饋點數(shù)

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品每天的銷量(百件)與返還點數(shù)之間的相關關系.請用最小二乘法求關于的線性回歸方程,并預測若回饋6個點時該商品每天銷量;

(2)已知節(jié)日期間某地擬購買該商品的消費群體十分龐大,營銷調研機構對其中的200名消費者的返點數(shù)額的心理預期值進行了抽樣調查,得到如下頻數(shù)表:

返還點數(shù)預期值區(qū)間

頻數(shù)

20

60

60

30

20

10

(i)求這200位擬購買該商品的消費者對返點點數(shù)的心理預期值的樣本平均數(shù)及中位數(shù)的估計值(同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到0.1);

(ii)將對返點點數(shù)的心理預期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,設抽出的3人中“欲望緊縮型”消費者的人數(shù)為隨機變量,求的分布列及數(shù)學期望.

參考公式及數(shù)據(jù):①,;②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠抽取了一臺設備在一段時間內(nèi)生產(chǎn)的一批產(chǎn)品,測量一項質量指標值,繪制了如圖所示的頻率分布直方圖.

(1)計算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(2)根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這臺設備在正常狀態(tài)下生產(chǎn)的產(chǎn)品的質量指標值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個產(chǎn)品,記其質量指標值為.若,則認為該產(chǎn)品為一等品;,則認為該產(chǎn)品為二等品;若,則認為該產(chǎn)品為不合格品.已知設備正常狀態(tài)下每天生產(chǎn)這種產(chǎn)品1000個.

(i)用樣本估計總體,問該工廠一天生產(chǎn)的產(chǎn)品中不合格品是否超過

(ii)某公司向該工廠推出以舊換新活動,補足50萬元即可用設備換得生產(chǎn)相同產(chǎn)品的改進設備.經(jīng)測試,設備正常狀態(tài)下每天生產(chǎn)產(chǎn)品1200個,生產(chǎn)的產(chǎn)品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產(chǎn)一個一等品可獲得利潤50元,生產(chǎn)一個二等品可獲得利潤30元,生產(chǎn)一個不合格品虧損40元,試為工廠做出決策,是否需要換購設備

參考數(shù)據(jù):①;②;③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1左右焦點為F1,F2直線(1xy0與該橢圓有一個公共點在y軸上,另一個公共點的坐標為(m,1).

1)求橢圓C的方程;

2)設P為橢圓C上任一點,過焦點F1F2的弦分別為PM,PN,設λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了健康中國理念的普及.下圖是我國2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長率(%).

(Ⅰ)從2007年至2016年這十年中隨機選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;

(Ⅱ)從2007年至2011年這五年中隨機選出兩年,求至少有一年體育產(chǎn)業(yè)年增長率超過25%的概率;

(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);

(3)在這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E,點A,B分別是橢圓E的左頂點和上頂點,直線AB與圓Cx2+y2c2相離,其中c是橢圓的半焦距,P是直線AB上一動點,過點P作圓C的兩條切線,切點分別為M,N,若存在點P使得△PMN是等腰直角三角形,則橢圓離心率平方e2的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若對任意的實數(shù)x1x2,x3,不等式fx1)+fx2>fx3)恒成立,則實數(shù)m的取值范圍是( )

A.[1,4B.1,4C.D.[]

查看答案和解析>>

同步練習冊答案