3.若a,b,c成等比數(shù)列,則方程ax2+bx+c=0( 。
A.有兩個(gè)不等實(shí)根B.有兩相等的實(shí)根C.無(wú)實(shí)數(shù)根D.無(wú)法確定

分析 先根據(jù)a,b,c成等比數(shù)列知b2=ac,推斷出ac>0,再根據(jù)△與0的關(guān)系判斷方程有無(wú)實(shí)根.

解答 解:∵a,b,c成等比數(shù)列,
∴b2=ac
∴ac>0
∴△=b2-4ac=-3ac<0
故方程ax2+bx+c=0無(wú)實(shí)根.
故選:C.

點(diǎn)評(píng) 本題主要考查了等比數(shù)列中等比中項(xiàng)的性質(zhì).屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)的圖象如圖所示,則不等式x•f(x)>0的解集為( 。
A.(-∞,-1)∪(2,+∞)B.(-∞,-1)∪(0,2)C.(-1,0)∪(2,+∞)D.(-1,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點(diǎn)為($0,\frac{3}{2}$),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和最低點(diǎn)分別為(x0,3),(x0+2π,-3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
(3)求這個(gè)函數(shù)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.從一批土雞蛋中,隨機(jī)抽取n個(gè)得到一個(gè)樣本,其重量(單位:克)的頻數(shù)分布表如表:
分組(重量)[80,85)[85,90)[90,95)[95,100]
頻數(shù)(個(gè))1050m15
已知從n個(gè)土雞蛋中隨機(jī)抽取一個(gè),抽到重量在在[90,95)的土雞蛋的根底為$\frac{4}{19}$
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個(gè),再?gòu)倪@5個(gè)土雞蛋中任取2 個(gè),其重量分別是g1,g2,求|g1-g2|≥10概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.一個(gè)多面體內(nèi)接于一個(gè)旋轉(zhuǎn)體,其正視圖、側(cè)視圖及俯視圖都是一個(gè)圓的正中央含一個(gè)正方形,如圖,若正方形的邊長(zhǎng)是1,則該旋轉(zhuǎn)體的表面積是3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.f(x)=x2B.f(x)=2xC.y=xD.y=-3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果圓x2+y2+Dx+Ey+F=0經(jīng)過(guò)原點(diǎn),而且與x軸只有一個(gè)交點(diǎn),那么( 。
A.F=0,D≠0,E≠0B.E=F=0,D≠0C.D=F=0,E≠0D.D=E=0,F(xiàn)≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在區(qū)間(1,+∞)上不是增函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=-x2+2x+1C.y=$\frac{x}{1-x}$+2D.y=1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.化簡(jiǎn)求值
(1)$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$
(2)$(-3{a^{\frac{1}{3}}}{b^{\frac{3}{4}}})•(\frac{1}{2}{a^{\frac{2}{3}}}{b^{\frac{1}{4}}})÷(-6{a^{\frac{5}{12}}}{b^{\frac{7}{12}}})(其中a>0,b>0)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案