14.已知函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),若f(-3)+g(3)=2,f(3)+g(-3)=4,則g(3)等于( 。
A.4B.3C.2D.1

分析 利用函數(shù)的奇偶性的性質(zhì),化簡已知條件通過解方程求解即可.

解答 解:函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),若f(-3)+g(3)=2,f(3)+g(-3)=4,
可得-f(3)+g(3)=2,f(3)+g(3)=4,
解得g(3)=3.
故選:B.

點(diǎn)評 本題考查函數(shù)的奇偶性的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.用某種型號的鋼板焊接一個長為1m的無蓋長方體容器(接縫忽略不計他),要求其容積為2m3,則至少需要這種型號的鋼板8m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.有下列命題:①雙曲線$\frac{x^2}{25}-\frac{y^2}{9}=1$與橢圓$\frac{x^2}{35}+{y^2}=1$有相同的焦點(diǎn);
②“-$\frac{1}{2}$<x<0”是“2x2-5x-3<0”必要不充分條件;
③若$\overrightarrow a$、$\overrightarrow b$共線,則$\overrightarrow a$、$\overrightarrow b$所在的直線平行;
④等軸雙曲線的離心率是$\sqrt{2}$;
⑤?x∈R,x2-3x+3≠0.
其中是真命題的有:①④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若AB=1,AC=4,A=120°,則△ABC的面積等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則a6的值等于32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若指數(shù)函數(shù)y=f(x)的圖象過點(diǎn)(1,2),則f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R),A=[-1,1],設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩根為x1,x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知角α的終邊經(jīng)過P($\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα;
(2)根據(jù)上述條件,你能否確定sin($\frac{π}{4}$+α)的值?若能,求出sin($\frac{π}{4}$+α)的值,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,圓柱OO1的底面圓半徑為2,ABCD為經(jīng)過圓柱軸OO1的截面,點(diǎn)P在$\widehat{{A}{B}}$上且$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,Q為PD上任意一點(diǎn).
(Ⅰ)求證:AQ⊥PB;
(Ⅱ)若線段PD的長為$2\sqrt{3}$,求圓柱OO1的體積.

查看答案和解析>>

同步練習(xí)冊答案