【題目】已知橢圓C過點(diǎn)M(1,),兩個(gè)焦點(diǎn)為A(﹣1,0),B(1,0),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)直線l過點(diǎn)A(﹣1,0),且與橢圓C交于P,Q兩點(diǎn),求△BPQ面積的最大值.
【答案】(1);(2)3.
【解析】
(1)由已知中焦點(diǎn)坐標(biāo),可得c值,進(jìn)而根據(jù)橢圓過M點(diǎn),代入求出a,b可得橢圓的標(biāo)準(zhǔn)方程;
(2)聯(lián)立直線與橢圓的方程,利用韋達(dá)定理及基本不等式,求出三角形面積的最大值.
(1)∵橢圓C的兩個(gè)焦點(diǎn)為A(﹣1,0),B(1,0),
故c=1,且橢圓的坐標(biāo)在x軸上
設(shè)橢圓C的方程為:
∵橢圓C過點(diǎn)M(1,),
∴
解得b2=3,或b2
∴橢圓C的方程為:
(2)設(shè)直線l的方程為:x=ky﹣1,P(x1,y1),Q(x2,y2),則
由得:(4+3k2)y2﹣6ky﹣9=0
則y1+y2,y1y2
∴S2c|y1﹣y2|
令t,(t≥1)
則S,
∵y在[1,+∞)上單調(diào)遞增,故當(dāng)t=1時(shí),y取最小值,此時(shí)S取最大值3,
當(dāng)t=1時(shí)取等號(hào),即當(dāng)k=0時(shí),△BPQ的面積最大值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,是正三角形,,.
(1)求平面與平面所成的銳二面角的大。
(2)點(diǎn)為線段上的一動(dòng)點(diǎn),設(shè)異面直線與直線所成角的大小為,當(dāng)時(shí),試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長生而言,當(dāng)BMI數(shù)值大于或等于20.5時(shí),我們說體重較重;當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕;身高大于或等于170的我們說身高較高;身高小于170的我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖所示,請(qǐng)根據(jù)所得信息,完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為男體育特長生的身高對(duì)指數(shù)有影響;
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如下表所示:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)率 (保留兩位有效數(shù)字);
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通過殘差分析,對(duì)于殘差(絕對(duì)值)最大的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤.已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為58(kg).請(qǐng)重新根據(jù)最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,
,,
().
() | 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(參考數(shù)據(jù))
,,,,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)已知函數(shù)在點(diǎn)的切線與圓相切,求實(shí)數(shù)的值.
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活海鮮,根據(jù)以往的銷售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某海鮮產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤為元.
(I)求關(guān)于的函數(shù)關(guān)系式;
(II)結(jié)合直方圖估計(jì)利潤不小于800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.
(1)若為的中點(diǎn),求證:面;
(2)若二面角為,設(shè),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線方程.
(1)經(jīng)過點(diǎn)A(-1,-3),且斜率等于直線3x+8y-1=0斜率的2倍;
(2)過點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長為12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )
A.該超市2018年的前五個(gè)月中三月份的利潤最高
B.該超市2018年的前五個(gè)月的利潤一直呈增長趨勢(shì)
C.該超市2018年的前五個(gè)月的利潤的中位數(shù)為0.8萬元
D.該超市2018年前五個(gè)月的總利潤為3.5萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了整頓道路交通秩序,某地考慮對(duì)行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如下數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會(huì)闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當(dāng)處罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?
(2)將選取的200人中會(huì)闖紅燈的市民分為兩類:類市民在罰金不超過10元時(shí)就會(huì)改正行為;類是其它市民.現(xiàn)對(duì)類與類市民按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類市民的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com