(本題滿分16分)
已知函數(shù),,,其中,
且.⑴當(dāng)時,求函數(shù)的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對任意給定的非零實數(shù),存在非零實
數(shù)(),使得成立,求實數(shù)的取值范圍.
解:⑴當(dāng)時, ∴
令,則, ∴在上單調(diào)遞增,在上單調(diào)遞減
∴ ----------------------------4分
⑵,,()
∴當(dāng)時,,∴函數(shù)的增區(qū)間為,
當(dāng)時,,
當(dāng)時,,函數(shù)是減函數(shù);
當(dāng)時,,函數(shù)是增函數(shù)。
綜上得,
當(dāng)時,的增區(qū)間為;
當(dāng)時,的增區(qū)間為,減區(qū)間為 ----------10分
⑶當(dāng),在上是減函數(shù),此時的取值集合;
當(dāng)時,,
若時,在上是增函數(shù),此時的取值集合;
若時,在上是減函數(shù),此時的取值集合。
對任意給定的非零實數(shù),
①當(dāng)時,∵在上是減函數(shù),則在上不存在實數(shù)(),使得,則,要在上存在非零實數(shù)(),使得成立,必定有,∴;
②當(dāng)時,在時是單調(diào)函數(shù),則,要在上存在非零實數(shù)(),使得成立,必定有,∴。
綜上得,實數(shù)的取值范圍為。 -------------------16分
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com