1.若lg25+lg2lg50的值為1.

分析 利用對數(shù)的運算法則及其lg5+lg2=1.

解答 解:原式=lg25+lg2(lg5+1)
=lg5(lg5+lg2)+lg2
=lg5+lg2
=1.
故答案為:1.

點評 本題考查了對數(shù)函數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.四棱錐P-ABCD的底面為矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E為側(cè)棱PC的中點,則異面直線AE與PD所成角的余弦值為( 。
A.$\frac{{\sqrt{30}}}{10}$B.$-\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{5}$D.$-\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.當x∈[2,3]時,x2+ax+a+1<0恒成立,則a的范圍是(-∞,-$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A是同時滿足下列兩個性質(zhì)的函數(shù)f(x)的全體.
①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);
②f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域為[$\frac{a}{2},\frac{2}$].
(1)判斷f(x)=x3是否屬于M,若是,求出所有滿足②的區(qū)間[a,b],若不是,說明理由;
(2)若是否存在實數(shù)t,使得h(x)=$\sqrt{x-1}+t∈M$,若存在,求實數(shù)t的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)f(x)是定義在R上的偶函數(shù),f(x)=-f(x+1),當x∈[0,1]時,f(x)=x+2,則當x∈[-2,0]時,f(x)=(  )
A.f(x)=x+4B.f(x)=2+|x+1|C.f(x)=2-xD.f(x)=3-|x+1|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=a•2x-2-x定義域為R的奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明;
(3)若不等式f(9x+1)+f(t-2•3x+5)>0在在R上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.經(jīng)過原點并且與直線x+y-2=0相切于點(2,0)的圓的標準方程是(x-1)2+(y+1)2=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知f(x)=(m2-m-1)x-5m-1是冪函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞增.
(Ⅰ)求m的值;
(Ⅱ)解不等式f(x-2)>16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

同步練習冊答案