(2013•鹽城一模)C.(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0 上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0 上的動(dòng)點(diǎn),求AB 的最小值.
分析:化極坐標(biāo)方程為直角坐標(biāo)方程,然后利用點(diǎn)到直線的距離公式求出圓心到直線的距離,則圓上的動(dòng)點(diǎn)A到直線上的動(dòng)點(diǎn)B的最小距離為圓心到直線的距離減去圓的半徑.
解答:解:由ρ2+2ρcosθ-3=0,得:x2+y2+2x-3=0,即(x+1)2+y2=4.
所以曲線是以(-1,0)為圓心,以2為半徑的圓.
再由ρcosθ+ρsinθ-7=0得:x+y-7=0.
所以圓心到直線的距離為d=
|-1-7|
2
=4
2

則圓上的動(dòng)點(diǎn)A到直線上的動(dòng)點(diǎn)B的最小距離為4
2
-2
點(diǎn)評(píng):本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,考查了極坐標(biāo)與直角坐標(biāo)的互化,訓(xùn)練了點(diǎn)到直線的距離公式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展開式中含x3項(xiàng)的系數(shù)為14,求n的值;
(2)當(dāng)x=3時(shí),求證:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)若數(shù)列{an}是首項(xiàng)為6-12t,公差為6的等差數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn=3n-t.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等比數(shù)列,試證明:對(duì)于任意的n(n∈N,n≥1),均存在正整數(shù)Cn,使得bn+1=a cn,并求數(shù)列{cn}的前n項(xiàng)和Tn
(3)設(shè)數(shù)列{dn}滿足dn=an•bn,且{dn}中不存在這樣的項(xiàng)dt,使得“dk<dk-1與dk<dk+1”同時(shí)成立(其中k≥2,k∈N*),試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)如圖,在等腰三角形ABC中,底邊BC=2,
AD
=
DC
AE
=
1
2
EB
,若
BD
AC
=
1
2
,則
CE
AB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)在△ABC中,若9cos2A-4cos2B=5,則
BC
AC
的值為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)D.(選修4-5:不等式選講)
設(shè)a1,a2,…an 都是正數(shù),且 a1•a2…an=1,求證:(1+a1)(1+a2)…(1+an)≥2n

查看答案和解析>>

同步練習(xí)冊(cè)答案