設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記曲線在點(diǎn)(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值
解:(Ⅰ)由已知,
所以, ……………2分
由,得, ……………3分
所以,在區(qū)間上,,
函數(shù)在區(qū)間上單調(diào)遞減; ……………4分
在區(qū)間上,,
函數(shù)在區(qū)間上單調(diào)遞增; ……………5分
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052220513534371560/SYS201205222054128437144325_DA.files/image010.png">,
所以曲線在點(diǎn)處切線為:. ……………7分
切線與軸的交點(diǎn)為,與軸的交點(diǎn)為, ……………9分
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052220513534371560/SYS201205222054128437144325_DA.files/image019.png">,所以, ……………10分
, ……………12分
在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.
……………13分
所以,當(dāng)時(shí),有最大值,此時(shí),
所以,的最大值為. ……………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省揭陽(yáng)市高三學(xué)業(yè)水平考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),其中,為正整數(shù),、、均為常數(shù),曲線在處的切線方程為.
(1)求、、的值;
(2)求函數(shù)的最大值;
(3)證明:對(duì)任意的都有.(為自然對(duì)數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省七校高三上學(xué)期第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值(其中e為自然對(duì)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(滿分15分)設(shè)函數(shù),,(其中為自然底數(shù));
(Ⅰ)求()的最小值;
(Ⅱ)探究是否存在一次函數(shù)使得且對(duì)一切恒成立;若存在,求出一次函數(shù)的表達(dá)式,若不存在,說(shuō)明理由;
(Ⅲ)數(shù)列中,,,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省模擬題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對(duì)于任意的,都有成立,求的取值范圍.
【解析】第一問(wèn)中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。
第二問(wèn)中,∵,,
∴原不等式等價(jià)于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)時(shí),,.
當(dāng)在上變化時(shí),,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時(shí),,.
(Ⅱ)∵,,
∴原不等式等價(jià)于:,
即, 亦即.
∴對(duì)于任意的,原不等式恒成立,等價(jià)于對(duì)恒成立,
∵對(duì)于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).
∴只需,即,解之得或.
因此,的取值范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com