【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。

【答案】解:(Ⅰ)當(dāng) 時(shí),直線l的普通方程為x=﹣1;
當(dāng) 時(shí),直線l的普通方程為y=(tanα)(x+1).…(2分)
由ρ=2cosθ,得ρ2=2ρcosθ,
所以x2+y2=2x,即為曲線C的直角坐標(biāo)方程.…(4分)
(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,整理得t2﹣4tcosα+3=0.當(dāng)α= 時(shí),方程化為:t2+3=0,方程不成立,當(dāng) 時(shí),由△=16cos2α﹣12=0,得 ,所以 ,
故直線l傾斜角α為
【解析】(Ⅰ)通過(guò)當(dāng) 時(shí),當(dāng) 時(shí),分別求出直線l的普通方程.由ρ=2cosθ,得ρ2=2ρcosθ,然后求解曲線C的直角坐標(biāo)方程.(Ⅱ)把x=﹣1+tcosα,y=tsinα代入x2+y2=2x,利用△=0,求解直線l傾斜角α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于點(diǎn)( ,0)對(duì)稱
C.關(guān)于直線x=﹣ 對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.

(1)求證:∥平面EFGH;

(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點(diǎn),AC= DC.
(I)若∠DAC=30°,求角B的大;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O過(guò)平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長(zhǎng)線于點(diǎn)D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市化工廠三個(gè)車間共有工人1 000名,各車間男、女工人數(shù)如下表:

第一車間

第二車間

第三車間

女工

173

100

y

男工

177

x

z

已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0. 15.

(1)求x的值;

(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問(wèn)應(yīng)在第三車間抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1X2,根據(jù)市場(chǎng)分析,X1X2的分布列分別為

X1

5%

10%

P

0.8

0.2

X2

2%

8%

12%

P

0.2

0.5

0.3

(1)A,B兩個(gè)項(xiàng)目上各投資100萬(wàn)元,Y1Y2分別表示投資項(xiàng)目AB所獲得的利潤(rùn),求方差V(Y1)、V(Y2)

(2)x(0≤x≤100)萬(wàn)元投資A項(xiàng)目,100x萬(wàn)元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤(rùn)的方差與投資B項(xiàng)目所得利潤(rùn)的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為曲線上兩點(diǎn),的橫坐標(biāo)之和為

(1)求直線的斜率;

(2)為曲線上一點(diǎn),處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案