【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,傾斜角為α(α≠ )的直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ﹣4sinθ=0.
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P(1,0).若點(diǎn)M的極坐標(biāo)為(1, ),直線l經(jīng)過點(diǎn)M且與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q,求|PQ|的值.
【答案】解:(Ⅰ)∵直線l的參數(shù)方程為 (t為參數(shù)). ∴直線l的普通方程為y=tanα(x﹣1),
由曲線C的極坐標(biāo)方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,
∴x2﹣4y=0,
∴曲線C的直角坐標(biāo)方程為x2=4y.
(Ⅱ)∵點(diǎn)M的極坐標(biāo)為(1, ),∴點(diǎn)M的直角坐標(biāo)為(0,1),
∴tanα=﹣1,直線l的傾斜角為 ,
∴直線l的參數(shù)方程為 ,
代入x2=4y,得 ,
設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)為t1 , t2 ,
∵Q為線段AB的中點(diǎn),
∴點(diǎn)Q對應(yīng)的參數(shù)值為 ,
又P(1,0),則|PQ|=| |=3 .
【解析】(Ⅰ)直線l的參數(shù)方程消去參數(shù)t,能求出直線l的普通方程;由曲線C的極坐標(biāo)方程能求出曲線C的直角坐標(biāo)方程.(Ⅱ)求出點(diǎn)M的直角坐標(biāo)為(0,1),從而直線l的傾斜角為 ,由此能求出直線l的參數(shù)方程,代入x2=4y,得 ,由此利用韋達(dá)定理和兩點(diǎn)間距離公式能求出|PQ|.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與拋物線的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn).
(1)求橢圓及拋物線的方程;
(2)設(shè)過且互相垂直的兩動(dòng)直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元. 在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).
(1)若=19,求y與x的函數(shù)解析式;
(2)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.8,求的最小值;
(3)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買18個(gè)易損零件,或每臺(tái)都購買19個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買18個(gè)還是19個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,分別為棱的中點(diǎn),是線段的中點(diǎn),若點(diǎn)分別為線段上的動(dòng)點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張三同學(xué)從7歲起到13歲每年生日時(shí)對自己的身高測量后記錄如表:
年齡 (歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高y關(guān)于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時(shí)的身高.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
= , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為雙曲線的左、右頂點(diǎn),雙曲線的實(shí)軸長為,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線與雙曲線的右支交于兩點(diǎn),且在雙曲線的右支上存在點(diǎn),使,求的值及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心在軸上,并且過兩點(diǎn).
(1)求圓的方程;
(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過原點(diǎn),若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com