已知橢圓C1∶+=1(a>b>0)的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(Ⅲ)設C2與x軸交于點Q,不同的兩點R、S在C2上,且滿足·=0,求||的取值范圍.
科目:高中數(shù)學 來源:導學大課堂選修數(shù)學1-1蘇教版 蘇教版 題型:044
已知橢圓C1:=1,拋物線C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.
(1)當AB⊥x軸時,求m、p的值,并判斷拋物線C2的焦點是否在直線AB上;
(2)若p=且拋物線C2的焦點在直線AB上,求m的值及直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:設計選修數(shù)學-1-1蘇教版 蘇教版 題型:044
已知橢圓C1:=1,拋物線C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.
(1)當AB⊥x軸時,求m、p的值,并判斷拋物線C2的焦點是否在直線AB上;
(2)是否存在m、p的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的m、p的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:陜西省寶雞市2010屆高三教學質量檢測(二)數(shù)學理合試題 題型:044
已知橢圓C1:=1(a>b>0)的離心率為,直線l:y=x+2與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2點M,求點M的軌跡C2的方程;
(3)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡市高三上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知橢圓C1:的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com