求經(jīng)過點且與曲線相切的直線方程。

解:∵點不在曲線上,∴設(shè)切點為…………1分

,…………4分

∴由導(dǎo)數(shù)的幾何意義得切線的斜率,……… 5分

∴所求切線方程為…………6分

∵點在切線上,∴①…………7分

在曲線上,∴②…………8分

聯(lián)立①、②解得,…………10分

∴所求直線方程為…………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三第十次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期三調(diào)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

已知函數(shù),為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的導(dǎo)數(shù)為實數(shù),.(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;(Ⅱ)在(Ⅰ)

的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案