3.在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,曲線C:ρcosθ-ρsinθ=1上的點與曲線M:$\left\{\begin{array}{l}{x=-2+cosφ}\\{y=1+sinφ}\end{array}\right.$(φ為參數(shù))上的點的最短距離為( 。
A.2$\sqrt{2}$B.2$\sqrt{2}$-1C.$\sqrt{2}$-1D.1

分析 直線、曲線M化為普通方程,求出圓心到直線的距離,即可得出結(jié)論.

解答 解:直線ρcosθ-ρsinθ=1化為x-y-1=0,曲線M:$\left\{\begin{array}{l}{x=-2+cosφ}\\{y=1+sinφ}\end{array}\right.$(φ為參數(shù))化為(x+2)2+(y-1)2=1,圓心為(-2,1),半徑為1,
圓心到直線的距離為$\frac{|-2-1-1|}{\sqrt{2}}$=2$\sqrt{2}$,
∴曲線C:ρcosθ-ρsinθ=1上的點與曲線M:$\left\{\begin{array}{l}{x=-2+cosφ}\\{y=1+sinφ}\end{array}\right.$(φ為參數(shù))上的點的最短距離為2$\sqrt{2}$-1,
故選:B.

點評 本題考查直線與圓的位置關(guān)系,考查極坐標方程、參數(shù)方程的轉(zhuǎn)化,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)為偶函數(shù),且滿足f(x)=f(x+2),f(-1)=1,若數(shù)列{an}的前n項和Sn滿足2Sn=an+1,a1=$\frac{1}{2}$,則f(a5)+f(a6)=( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.過拋物線y2=8x焦點F作直線l交拋物線于A、B兩點,若線段AB中點M的橫坐標為4,則|AB|=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=$\sqrt{{x}^{2}-5x-6}$的定義域為(-∞,-1]∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a>0,b>0,a+b=2,則下列不等式不恒成立的是( 。
A.ab≤1B.a2+b2≥2C.$\sqrt{a}$+$\sqrt$≤$\sqrt{2}$D.$\frac{1}{a}$+$\frac{1}$≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)數(shù)列{an} 的前n項和為Sn,已知4Sn=2an-n2+7n(n∈N*),則a11=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1).且當x∈[-1,0]時,f(x)=-x2+1,如果函數(shù)g(x)=f(x)-a|x|恰有8個零點,則實數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x2-4x+3<0},則A∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.高二年級有500名學生,為了了解數(shù)學學科的學習情況,現(xiàn)從中隨機抽出若干名學生在一次測試中的數(shù)學成績,制成如下頻率分布表:
分組頻數(shù)頻率
[85,95)0.025
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合計
(1)根據(jù)圖表,①②③處的數(shù)值分別為1、0.1、1;
(2)在所給的坐標系中畫出[85,155]的頻率分布直方圖;
(3)根據(jù)題中信息估計總體落在[125,155]中的概率.

查看答案和解析>>

同步練習冊答案