已知函數(shù).
(1)求在上的最大值;
(2)若直線為曲線的切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),設(shè),且,若不等式恒成立,求實(shí)數(shù)的最小值.
(1)(2)或. (3)的最小值為.
【解析】
試題分析:
(1)利用導(dǎo)數(shù)可以求解函數(shù)單調(diào)性得到極值與最值,但是函數(shù)含有參數(shù),故而需要討論,首先對(duì)函數(shù)求定義域,求導(dǎo)可以發(fā)現(xiàn)導(dǎo)函數(shù)的分母恒大于0不影響導(dǎo)函數(shù)符號(hào),故考慮分子大于0,小于0的解集,討論a的范圍得到區(qū)間的單調(diào)性,分析就可以得到原函數(shù)在固定區(qū)間上的最值.
(2)設(shè)出切點(diǎn)坐標(biāo),利用切點(diǎn)滿足的三個(gè)條件(①切點(diǎn)在原函數(shù)上,坐標(biāo)滿足原函數(shù)方程 ②切點(diǎn)在切線上,坐標(biāo)滿足切線方程 ③原函數(shù)在切點(diǎn)處的導(dǎo)數(shù)為切線的斜率)建立關(guān)于a的方程,解方程求出a的值.
(3)由(2)的結(jié)論得到此時(shí)直線為曲線的切線,且分析原函數(shù)與切線的圖像可以發(fā)現(xiàn)曲線在直線下方,即可以發(fā)現(xiàn)在區(qū)間上不等式恒成立,作差即可嚴(yán)格證明該不等式是成立的.利用該不等式對(duì)放縮為可求和的式子,進(jìn)而求的的最值,得到的取值范圍與最值.
試題解析:
(1), 2分
令,解得(負(fù)值舍去),
由,解得.
(。┊(dāng)時(shí),由,得,
在上的最大值為. 3分
(ⅱ)當(dāng)時(shí),由,得,
在上的最大值為. 4分
(ⅲ)當(dāng)時(shí),在時(shí),,在時(shí),,
在上的最大值為. 5分
(2)設(shè)切點(diǎn)為,則 6分
由,有,化簡(jiǎn)得,
即或, ①
由,有,②
由①、②解得或. 9分
(3)當(dāng)時(shí),,
由(2)的結(jié)論直線為曲線的切線,
,點(diǎn)在直線上,
根據(jù)圖像分析,曲線在直線下方. 10分
下面給出證明:當(dāng)時(shí),.
,
當(dāng)時(shí),,即. 12分
,
, .
要使不等式恒成立,必須. 13分
又當(dāng)時(shí),滿足條件,
且,
因此,的最小值為. 14分
考點(diǎn):函數(shù)的性質(zhì)、導(dǎo)數(shù)運(yùn)算法則、導(dǎo)數(shù)的幾何意義及其應(yīng)用、不等式的求解與證明、恒成立問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),
(1)求在x=1處的切線斜率的取值范圍;
(2)求當(dāng)在x=1處的切線的斜率最小時(shí),的解析式;
(3)在(Ⅱ)的條件下,是否總存在實(shí)數(shù)m,使得對(duì)任意的,總存在,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知函數(shù),.
(1)求在區(qū)間的最小值; (2)求證:若,則不等式≥對(duì)于任意的恒成立; (3)求證:若,則不等式≥對(duì)于任意的恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二5月教學(xué)質(zhì)量檢測(cè)理科數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com