13.下列結(jié)論中正確的個(gè)數(shù)是( 。
①當(dāng)a<0時(shí),(a2)${\;}^{\frac{3}{2}}$=a3
②$\root{n}{{a}^{n}}$=|a|(n>1,n∈N)
③函數(shù)y=(x-2)${\;}^{\frac{1}{2}}$-(3x-7)0的定義域是[2,+∞);
④計(jì)算[(-$\sqrt{2}$)2]${\;}^{-\frac{1}{2}}$的結(jié)果是$\frac{\sqrt{2}}{2}$.
A.1B.2C.3D.4

分析 對4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①當(dāng)a<0時(shí),(a2)${\;}^{\frac{3}{2}}$=-a3,不正確;
②$\root{n}{{a}^{n}}$=$\left\{\begin{array}{l}{a,n是奇數(shù)}\\{|a|,n是偶數(shù)}\end{array}\right.$(n>1,n∈N),不正確;
③函數(shù)y=(x-2)${\;}^{\frac{1}{2}}$-(3x-7)0的定義域是[2,$\frac{7}{3}$)∪($\frac{7}{3}$,+∞),不正確;
④計(jì)算[(-$\sqrt{2}$)2]${\;}^{-\frac{1}{2}}$的結(jié)果是$\frac{\sqrt{2}}{2}$,正確.
故選A.

點(diǎn)評(píng) 本題考查命題的真假判斷,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等差數(shù)列{an}中,a1+a5=20,a9=20,則a6=( 。
A.15B.20C.25D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)全集U是實(shí)數(shù)集R,集合M={x|x2>2x},N=$\left\{{x|\frac{2-x}{x-1}≥0}\right\}$,則(∁UM)∩N為( 。
A.{x|1<x<2}B.{x|1≤x≤2}C.{x|1<x≤2}D.{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}中,Sn為其前n項(xiàng)和,若Sn=2an-3,則此數(shù)列的通項(xiàng)公式an=3•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$的值是( 。
A.sin2-cos2B.cos2-sin2C.-(sin2+cos2)D.sin2+cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1=1,S2=a3,則Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ 3x-y-3≤0\end{array}\right.$,目標(biāo)函數(shù)z=x2+y2的最小值為( 。
A.13B.$\sqrt{13}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若16x=9y=4,則xy等于(  )
A.log43B.log49C.log92D.log94

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f'(x),對任意的實(shí)數(shù)x都有f(x)=4x2-f(-x),當(dāng)x∈(-∞,0)時(shí),$f'(x)+\frac{1}{2}<4x$.若f(m+1)≤f(-m)+4m+2,則實(shí)數(shù)m的取值范圍是( 。
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊答案