【題目】(12分)

已知拋物線的焦點F與橢圓的一個焦點重合,點在拋物線上,過焦點F的直線l交拋物線于A,B兩點.

(1)求拋物線C的標(biāo)準(zhǔn)方程以及的值.

(2)記拋物線的準(zhǔn)線軸交于點H,試問是否存在常數(shù),使得,且都成立.若存在,求出的值;若不存在,請說明理由.

【答案】(1).

(2).

【解析】試題分析:(1)由拋物線的焦點與橢圓的一個焦點重合可求得的值,即可得拋物線的標(biāo)準(zhǔn)方程,從而可求得,再根據(jù)拋物線的定義即可求得的值;(2)設(shè),聯(lián)立,根據(jù)韋達(dá)定理可得的值再根據(jù),可得的關(guān)系,再將化簡,即可求得的值.

試題解析(1)依題意得橢圓的焦點為,即,故,則,故拋物線的標(biāo)準(zhǔn)方程為,將代入,得,故.

(2)設(shè),聯(lián)立,,所以,

,,,代入式,得

消去,得.

.

解得(舍去),故.

即存在滿足條件,且的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1到7的7個數(shù)字中取兩個偶數(shù)和三個奇數(shù)組成沒有重復(fù)數(shù)字的五位數(shù).

試問:(1)能組成多少個不同的五位偶數(shù)?

(2)五位數(shù)中,兩個偶數(shù)排在一起的有幾個?

(3)兩個偶數(shù)不相鄰且三個奇數(shù)也不相鄰的五位數(shù)有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移1個單位,得到函數(shù)的圖像.

1)當(dāng)時,求的值域

2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù)a為實數(shù)).

(1)當(dāng)時,求函數(shù)的圖像在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個不等實數(shù),使方程成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形的勃勞卡德點是以法國軍官亨利·勃勞卡德(Henri.Brocard)命名的,他在1875年曾描述過這一事實,即:對任何一個三角形都存在唯一的角,即勃勞卡德角,使得圖中連接三個頂點的線相交于勃勞卡德點Q,如圖所示.

1)研究發(fā)現(xiàn):等腰直角三角形中,若是斜邊的等腰直角三角形,求線段的長度;

2)若中,,,求的值;

3)若中,若線段,的長度是1為首項,公比為q)的等比數(shù)列,當(dāng)時,求公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若有最小值,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

同步練習(xí)冊答案