【題目】為增強學生法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50人,統(tǒng)計他們的競賽成績,并得到如表所示的頻數(shù)分布表.
分數(shù)段 | |||||
人數(shù) | 5 | 15 | 15 | 12 |
(Ⅰ)求頻數(shù)分布表中的的值,并估計這50名學生競賽成績的中位數(shù)(精確到0.1);
(Ⅱ)將成績在內(nèi)定義為“合格”,成績在內(nèi)定義為“不合格”.請將列聯(lián)表補充完整.
合格 | 不合格 | 合計 | |
高一新生 | 12 | ||
非高一新生 | 6 | ||
合計 |
試問:是否有95%的把握認為“法律知識的掌握合格情況”與“是否是高一新生”有關?說明你的理由;
(Ⅲ)在(Ⅱ)的前提下,在該50人中,按“合格與否”進行分層抽樣,隨機抽取5人,再從這5人中隨機抽取2人,求恰好2人都合格的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
【答案】(Ⅰ),中位數(shù)73.3(Ⅱ)見解析,有(Ⅲ)0.3
【解析】
(Ⅰ)先利用樣本總數(shù)減去前面各組樣本數(shù),即可求得的值,再利用中位數(shù)的定義列方程,即可求解;
(Ⅱ)根據(jù)頻數(shù)分布表,填寫2×2列聯(lián)表,再代入公式中進行計算,查表,即可得解;
(Ⅲ)先求出分層抽樣的比例,再利用枚舉法分別求得事件總數(shù)和所求的基本事件數(shù),利用古典概型的概率公式,即可得解.
(Ⅰ).設成績的中位數(shù)為,
則,解得.
(Ⅱ)補全2×2列聯(lián)表如下所示:
合格 | 不合格 | 合計 | |
高一新生 | 12 | 14 | 26 |
非高一新生 | 18 | 6 | 24 |
合計 | 30 | 20 | 50 |
,
所以有95%的把握認為“法律知識的掌握合格情況”與“是否是高一新生”有關.
(Ⅲ)分層抽樣的比例為,故抽取的5人中成績合格的有(人),
分別記為,,;成績不合格的有(人),分別記為,.
從5人中隨機抽取2人的基本事件有
,,,,,,,,,,共10種,
2人都合格的基本事件有,,,共3種,
所以恰好2人都合格的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點、,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)已知定點,,過點的直線與曲線交于、兩點 ,則直線與斜率之積是否為定值,若是求出定值;若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
平面直角坐標系xOy中,曲線C:.直線l經(jīng)過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標系.
(Ⅰ)寫出曲線C的極坐標方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市正在進行創(chuàng)建全國文明城市的復驗工作,為了解市民對“創(chuàng)建全國文明城市”的知識知曉程度,某權威調(diào)查機構對市民進行隨機調(diào)查,并對調(diào)查結果進行統(tǒng)計,共分為優(yōu)秀和一般兩類,先從結果中隨機抽取100份,統(tǒng)計得出如下列聯(lián)表:
優(yōu)秀 | 一般 | 總計 | |
男 | 25 | 25 | 50 |
女 | 30 | 20 | 50 |
總計 | 55 | 45 | 100 |
(1)根據(jù)上述列聯(lián)表,是否有的把握認為“創(chuàng)城知識的知曉程度是否為優(yōu)秀與性別有關”?
(2)現(xiàn)從調(diào)查結果為一般的市民中,按分層抽樣的方法從中抽取9人,然后再從這9人中隨機抽取3人,求這三位市民中男女都有的概率;
(3)以樣本估計總體,視樣本頻率為概率,從全市市民中隨機抽取10人,用表示這10人中優(yōu)秀的人數(shù),求隨機變量的期望和方差.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設矩陣M= (其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:+y2=1,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.
(1)求拋物線C的方程;
(2)若F在線段上,P是的中點,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱中,,、、分別是線段、、的中點,,,在線段上運動,設.
(1)證明:;
(2)是否存在點,使得平面與平面所成的銳二面角的大小為?若存在,試確定點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com