20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,直線x=a與雙曲線的漸近線在第一象限的交點(diǎn)為A,且直線AF與雙曲線的一條漸近線關(guān)于直線y=b對(duì)稱,則雙曲線的離心率為(  )
A.$\sqrt{5}$B.3C.2D.$\sqrt{2}$

分析 由題意可得F(c,0),求出雙曲線的一條漸近線方程,解得A(a,b),求得直線AF的斜率,由對(duì)稱思想可得直線AF的斜率和漸近線的斜率互為相反數(shù).再由離心率公式計(jì)算即可得到所求值.

解答 解:由題意可得F(c,0),
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{a}$x,
令x=a,可得A(a,b),
可得直線AF的方程為y=$\frac{a-c}$(x-c),
由于直線y=b經(jīng)過A,且斜率為0,
由對(duì)稱性可得直線AF的斜率和漸近線的斜率互為相反數(shù).
即有$\frac{a}$=-$\frac{a-c}$,
即為a=c-a,可得c=2a,
離心率e=$\frac{c}{a}$=2.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程和直線關(guān)于直線對(duì)稱的思想,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={x|-1<x<2},B={x|x>0},則A∩B={x|0<x<2},(∁RB)∪A={x|x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的漸近線方程為$y=±\sqrt{2}x$,拋物線N的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)E(2,2)為雙曲線M與拋物線N的一個(gè)公共點(diǎn).
(Ⅰ)求雙曲線M與拋物線N的方程;
(Ⅱ) 過拋物線N的焦點(diǎn)F作兩條相互垂直的直線l1,l2,與拋物線分別交于點(diǎn)A、B,C、D.
(ⅰ)若直線EA與直線EB的傾斜角互補(bǔ)(點(diǎn)A,B不同于E點(diǎn)),求直線l1的斜率;
(ⅱ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,試求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等比數(shù)列{an}的前n項(xiàng)為和Sn,且a3-2a2=0,S3=7.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\left\{{\frac{n}{a_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于雙曲線C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),若點(diǎn)P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$<1,則稱P在C(a,b)的外部,若點(diǎn)P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$>1,則稱C(a,b)在的內(nèi)部;
(1)若直線y=kx+1上的點(diǎn)都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過點(diǎn)(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求b、r滿足的關(guān)系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點(diǎn)都在C(a,b)的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{5}$.則b=2,若以(2,1)為圓心,r為半徑的圓與該雙曲線的兩條漸近線組成的圖形只有一個(gè)公共點(diǎn),則半徑r=$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線2x2-y2=6的焦距為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線C:x2-y2=1的焦點(diǎn)到漸近線的距離等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={y|y=x2-4x+5},集合B={x|x2-1=0},則A∩B=( 。
A.{-1}B.{1}C.{-1,1,5}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案