【題目】如圖,三棱柱的底面是邊長為的正三角形,側(cè)棱底面為中點(diǎn),分別為上的點(diǎn),且滿足.
(1)求證:平面平面, ;
(2)若三棱錐的體積為,求三棱柱的側(cè)棱長.
【答案】(1)證明見解析,(2)6
【解析】
(1)分別取中點(diǎn),連接,首先證明,,得到平面.再證明,可得到平面.又因?yàn)?/span>平面,所以平面平面.
(2)將轉(zhuǎn)化為,計(jì)算即可得到的值.
(1)分別取中點(diǎn),連接.
因?yàn)?/span>為正三角形,為中點(diǎn)
所以.
又因?yàn)?/span>底面,平面.
所以,,
所以平面.
因?yàn)?/span>分別為中點(diǎn),
所以且,
又因?yàn)?/span>,
所以.
因?yàn)?/span>為中點(diǎn),所以.
因?yàn)?/span>且,
所以且.
所以且,所以四邊形為平行四邊形.
所以
因?yàn)?/span>平面平面.
平面,所以平面平面.
(2)設(shè)側(cè)棱長為,則,.
過作于,與(1)同理可證平面.
因?yàn)?/span>平面.
所以到平面的距離到平面的距離.
因?yàn)?/span>為正三角形,所以.
解得:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:,四邊形和都為正方形,原點(diǎn)為的中點(diǎn),點(diǎn)在拋物線上.
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)測驗(yàn)共有10道選擇題,每道題共有四個選項(xiàng),且其中只有一個選項(xiàng)是正確的,評分標(biāo)準(zhǔn)規(guī)定:每選對1道題得5分,不選或選錯得0分,某考試每道都選并能確定其中有6道題能選對,其余4道題無法確定正確選項(xiàng),但這4道題中有2道能排除兩個錯誤選項(xiàng),另2題只能排除一個錯誤選項(xiàng),于是該生做這4道題時每道題都從不能排除的選項(xiàng)中隨機(jī)挑選一個選項(xiàng)做答,且各題做答互不影響.
(Ⅰ)求該考生本次測驗(yàn)選擇題得50分的概率;
(Ⅱ)求該考生本次測驗(yàn)選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=6sinθ,建立以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸的平面直角坐標(biāo)系.直線l的參數(shù)方程是,(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),且|AB|=,求直線的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市A(看做一點(diǎn))的東偏南角方向,300 km的海面P處,并以20km / h的速度向西偏北45°方向移動.臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10km / h的速度不斷增大.
(1) 問10小時后,該臺風(fēng)是否開始侵襲城市A,并說明理由;
(2) 城市A受到該臺風(fēng)侵襲的持續(xù)時間為多久?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,滿足(…).
(1)若,求的值;
(2)若且,則數(shù)列中第幾項(xiàng)最?請說明理由;
(3)若(n=1,2,3,…),求證:“數(shù)列為等差數(shù)列”的充分必要條件是“數(shù)列為等差數(shù)列且(n=1,2,3,…)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊(duì)15個.為了保證閱兵式時隊(duì)列保持整齊,各個方隊(duì)對受閱隊(duì)員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊(duì)隊(duì)員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊(duì),其隊(duì)員的身高一般都在184cm至190cm之間.經(jīng)過隨機(jī)調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計(jì)值為0.5.
(1)求直方圖中a,b的值;
(2)估計(jì)這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為常數(shù)) .
(1)當(dāng)時,求曲線在處的切線方程:
(2)若函數(shù)在內(nèi)存在唯一極值點(diǎn),求實(shí)數(shù)的取值范圍,并判斷,是在內(nèi)的極大值點(diǎn)還是極小值點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com