【題目】已知A(-1,1),B(1,1),C(2, +1),
(1)求直線AB和AC的斜率.
(2)若點(diǎn)D在線段AB(包括端點(diǎn))上移動(dòng)時(shí),求直線CD的斜率的變化范圍.

【答案】
(1)解:由斜率公式得

kAB= =0,kAC= = .

所以直線AB的斜率為0,直線AC的斜率為


(2)解:如圖所示。

由斜率公式可得kBC= = .

設(shè)直線CD的斜率為k,

結(jié)合圖形可得當(dāng)直線CD由CA的位置按逆時(shí)針方向旋轉(zhuǎn)到CB的位置時(shí),直線CD與AB恒有交點(diǎn),此時(shí)k由kCA增大到kCB,

所以 。

即k的取值范圍為


【解析】(1)根據(jù)題意結(jié)合已知條件利用直線斜率的坐標(biāo)公式代入數(shù)值求出結(jié)果即可。(2)根據(jù)題意結(jié)合已知條件作出圖像結(jié)合圖形可得當(dāng)直線CD由CA的位置按逆時(shí)針方向旋轉(zhuǎn)到CB的位置時(shí),直線CD與AB恒有交點(diǎn)進(jìn)而得出k的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定點(diǎn)F1(0,﹣3)、F2(0,3),動(dòng)點(diǎn)P滿足條件|PF1|+|PF2|=a+ (a>0),則點(diǎn)P的軌跡是(
A.橢圓
B.線段
C.不存在
D.橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面為直角梯形, ∠CDA=∠BAD=90°, ,M,N分別是PD,PB的中點(diǎn).

(1)求證:MQ∥平面PCB;
(2)求截面MCN與底面ABCD所成二面角的大小;
(3)求點(diǎn)A到平面MCN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng).他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

a

b


(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).求證:

(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用斜二測(cè)畫法畫出圖中水平放置的△OAB的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,y>0,且2x+8y-xy=0,求:
(1)xy的最小值;
(2)x+ y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ ,x∈[0,1].
(1)用分析法證明:f(x)≥1﹣x+x2;
(2)證明:f(x)≤

查看答案和解析>>

同步練習(xí)冊(cè)答案