分析 (1)由圖可知,z1=-1+2i,z2=1+3i,求出z1-z2,再由復(fù)數(shù)求模公式計算得答案.
(2)把z1=-1+2i,z2=1+3i代入$\frac{z-{z}_{1}}{z-{z}_{2}}$,化簡整理,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.
解答 解:(1)由圖可知,z1=-1+2i,z2=1+3i,
∴z1-z2=-2-i,
∴$|{z}_{1}-{z}_{2}|=\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{5}$.
(2)$\frac{z-{z}_{1}}{z-{z}_{2}}$=$\frac{z-(-1+2i)}{z-(1+3i)}$=-1-i,
化簡整理得:$z=\frac{6i-3}{2+i}=\frac{(6i-3)(2-i)}{(2+i)(2-i)}=3i$.
點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$ | B. | C${\;}_{3}^{1}$C${\;}_{8}^{2}$ | ||
C. | $\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$ | D. | $\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 2012 | C. | 503 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com