(1)求雙曲線(xiàn)的離心率e;
(2)過(guò)點(diǎn)P作直線(xiàn)分別與雙曲線(xiàn)的兩漸近線(xiàn)相交于P1,P2兩點(diǎn),若
=0,求雙曲線(xiàn)C的方程.
解:(1)由=0得,即△F1PF2為直角三角形.
設(shè),則=2r,于是有(2r)2+r2=4c2和2r-r=2a5×(2a)2=4c2e=.
(2)設(shè)P1(x1y1),P2(x2,y2),
則=x1x2+y1y2=x1x2-4x1x2=x1x2=.①
由=0,得
∵點(diǎn)P(x,y)在雙曲線(xiàn)=1上,
∴=1,
又b2=4a2.
∴上式為=1.簡(jiǎn)化得x1x2=a2.②
由①②得a2=2,從而得b2=8.故所求雙曲線(xiàn)方程為=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
4 |
y2 |
3 |
y |
b |
a |
. |
x |
. |
y |
AE |
AB |
1 |
2 |
AC |
2 |
3 |
AD |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北武漢市高三2月調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線(xiàn)ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線(xiàn)l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F1、F2分別為橢圓Γ的左、右焦點(diǎn),直線(xiàn)NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線(xiàn)OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿(mǎn)足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com