6.已知集合A={x|3x<16,x∈N},B={x|x2-5x+4<0},則A∩(∁RB)=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{x|0<x<1}

分析 先分別求出集合A和B,再求出CRB,由此能求出A∩(∁RB).

解答 解:∵集合A={x|3x<16,x∈N}={0,1,2},
B={x|x2-5x+4<0}={x|1<x<4},
∴CRB={x|x≤1或x≥4},
∴A∩(∁RB)={0,1}.
故選:B.

點評 本題考查補集、交集的求法,是基礎(chǔ)題,解題時要認真審題,注意補集、交集定義的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.對于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,下列命題正確的是( 。
A.若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$,B.若$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,則|$\overrightarrow{a}$|+|$\overrightarrow$|>|$\overrightarrow{c}$|
C.若($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=0,則$\overrightarrow{a}$⊥$\overrightarrow$D.若$\overrightarrow{a}$•$\overrightarrow$>0,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=xlnx-1的零點所在區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成角的度數(shù)是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點和拋物線y2=4$\sqrt{3}$x的焦點相同,且橢圓過點(-$\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓方程;
(2)過點(3,0)的直線交橢圓于A、B兩點,P為橢圓上一點,且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OP}$(λ≠0,O為原點),當|AB|<$\sqrt{3}$時,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)f(x)可導(dǎo)且下列各極限均存在,則( 。┏闪ⅲ
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,AB=AC,點M在BC上,$4\overrightarrow{BM}=\overrightarrow{BC}$,N是AM的中點,sin∠BAM=$\frac{1}{3}$,AC=2,則$\overrightarrow{AM}•\overrightarrow{CN}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}}\right.$關(guān)于x的方程2[f(x)]2+(1-2m)f(x)-m=0,有5不同的實數(shù)解,則m的取值范圍是( 。
A.$(-1,\frac{1}{e})$B.(0,+∞)C.$(0,\frac{1}{e})$D.$(0,\frac{1}{e}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若數(shù)列{an}滿足a1=1,且an+1=2an,n∈N*,則a6的值為32.

查看答案和解析>>

同步練習冊答案