函數(shù)f(x)的定義域為D,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[-b,-a],那么yf(x)叫做對稱函數(shù),現(xiàn)有f(x)=k是對稱函數(shù),那么k的取值范圍是________.
由于f(x)=k在(-∞,2]上是減函數(shù),所以⇒關(guān)于x的方程k=-x在(-∞,2]上有兩個不同實根,通過換元結(jié)合圖象可得k.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ax2bxc,且f(1)=-,3a>2c>2b,求證:
(1)a>0,且-3<<-
(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;
(3)設(shè)x1,x2是函數(shù)f(x)的兩個零點,則≤|x1x2|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)定義在區(qū)間都有不恒為零.
(1)求的值;
(2)若求證:;
(3)若求證:上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=2x.若對任意的x∈[a,a+2],不等式f(x+a)≥f2(x)恒成立,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)是奇函數(shù),且x0是y=f(x)+ex的一個零點,則-x0一定是下列哪個函數(shù)的零點(  )
A.y=f(-x)ex-1 B.y=f(x)e-x+1
C.y=exf(x)-1 D.y=exf(x)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=a-是定義在(-∞,-1]∪[1,+∞)上的奇函數(shù),則f(x)的值域為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x),g(x)的定義域分別為M,N,且M是N真子集,若對任意的x∈M,都有g(shù)(x)=f(x),則稱g(x)是f(x)的“拓展函數(shù)”.已知函數(shù)f(x)=log2x,若g(x)是f(x)的“拓展函數(shù)”,且g(x)是偶函數(shù),則符合條件的一個g(x)的解析式是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x-sin x在區(qū)間[0,2π]上的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某企業(yè)為了節(jié)能減排,決定安裝一個可使用15年的太陽能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的成本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數(shù)約為,為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費C(單位:萬元)與安裝的這種太陽能電池板的面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)=(x>0).記該企業(yè)安裝這種太陽能供電設(shè)備的費用與該企業(yè)15年共將消耗的電費之和為F(x)(萬元),則F(40)等于(  )
A.80 B.60C.D.40

查看答案和解析>>

同步練習(xí)冊答案