12.一個幾何體的三視圖如圖所示,它的外接球的表面積為32π.

分析 由三視圖可知該幾何體為四棱錐,由三視圖求出幾何元素的長度、判斷出位置關(guān)系,利用對應(yīng)的三棱柱確定外接球球心的位置,并求出球的半徑,利用球的表面積公式求解.

解答 解:由三視圖知該幾何體為如圖所示的四棱錐P-ABCD,
且PE⊥平面ABC,E、F、O分別是對應(yīng)邊的中點,底面ABCD是邊長是4的正方形,
∵AE=ED=PE=2,∴PA⊥PD,則E是△PAD外接圓的圓心,
由圖可得,四棱錐P-ABCD的外接球是直三棱柱的外接球,
∴外接球的球心是O,則OP=OC=OA=OB=OD=2$\sqrt{2}$,
∴幾何體的外接球的表面積S=4πR2=32π,
故答案為:32π.

點評 本題考查三視圖求幾何體外接球的表面積,由三視圖正確復(fù)原幾何體以及正確確定外接球球心的位置是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點$M(\sqrt{3},{y_0})$作圓O:x2+y2=1的切線,切點為N,如果y0=0,那么切線的斜率是±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線C:y2=6x的焦點為F,B為C的準(zhǔn)線上一點,A為直線BF與C的一個交點,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,則點A到原點的距離為$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列給出的四個框圖,其中滿足WHILE語句格式的是(  )
A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知F是拋物線y2=4x的焦點,過該拋物線上一點M作準(zhǔn)線的垂線,垂足為N,若$|MF|=\frac{4}{3}$,則∠NMF=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:y2=2px(p>0)的內(nèi)接等邊三角形AOB的面積為3$\sqrt{3}$(其中O為坐標(biāo)原點 )
(Ⅰ)試求拋物線C的方程;
(Ⅱ)已知點M(1,1),P、Q兩點在拋物線C上,△MPQ是以點M為直角頂點的直角三角形
(i)求證:直線PQ恒過定點;
(ii)過點M作直線PQ的垂線交PQ于點N,試求點N的軌跡方程,并說明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C:y2=2px(p>0)的內(nèi)接等邊三角形AOB的面積為$3\sqrt{3}$(其中O為坐標(biāo)原點).
(1)試求拋物線C的方程;
(2)已知點M(1,1),P,Q兩點在拋物線C上,△MPQ是以點M為直角頂點的直角三角形,求證:直線PQ恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題正確的是( 。
A.第二象限角必是鈍角B.相等的角終邊必相同
C.終邊相同的角一定相等D.不相等的角終邊必不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.運(yùn)行如圖的程序框圖,輸出的n值為( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案