函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.

(1)a≥1時(shí),在(-,+)是增函數(shù);0<a<1時(shí), f(x)在(-,x2),(x1,+)上是增函數(shù);f(x)在(x2,x1)上是減函數(shù);(2)

解析試題分析:(1)首先求出函數(shù)的導(dǎo)數(shù),然后求出是的解集即可.
(2)分類討論在區(qū)間(1,2)上使成立的條件,并求出參數(shù)a的取值范圍即可
試題解析:(1),的判別式△=36(1-a).
(i)若a≥1,則,且當(dāng)且僅當(dāng)a=1,x=-1,故此時(shí)f(x)在R上是增函數(shù).
(ii)由于a≠0,故當(dāng)a<1時(shí),有兩個(gè)根:,
若0<a<1,則當(dāng)x∈(-,x2)或x∈(x1,+)時(shí),,故f(x)在(-,x2),(x1,+)上是增函數(shù);
當(dāng)x∈(x2,x1)時(shí),,故f(x)在(x2,x1)上是減函數(shù);
(2)當(dāng)a>0,x>0時(shí), ,所以當(dāng)a>0時(shí),f(x)在區(qū)間(1,2)是增函數(shù).
若a<0時(shí),f(x)在區(qū)間(1,2)是增函數(shù)當(dāng)且僅當(dāng),解得.
綜上,a的取值范圍是.
考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.導(dǎo)數(shù)性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實(shí)數(shù)的值;
(3)設(shè)有兩個(gè)極值點(diǎn)、(),求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知, ,,其中e是無(wú)理數(shù)且e="2.71828" ,.
(1)若,求的單調(diào)區(qū)間與極值;
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù)a,使的最小值是?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1當(dāng) 時(shí), 與)在定義域上單調(diào)性相反,求的 的最小值。
(2)當(dāng)時(shí),求證:存在,使的三個(gè)不同的實(shí)數(shù)解,且對(duì)任意都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),
(1)若處有極值,求a;
(2)若上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù)。
(Ⅰ)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中,且曲線在點(diǎn)處的切線垂直于.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求下列函數(shù)的導(dǎo)數(shù):
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(-1,)處的切線方程。
(1)求函數(shù)的解析式;   
(2)求函數(shù)的圖像有三個(gè)交點(diǎn),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案