A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
分析 由$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$可得2+x-y=1,從而解得.
解答 解:∵$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$(x,y∈R),
∴2+x-y=1,
∴y=x+1,
∴x2+y2=x2+(x+1)2≥$\frac{1}{4}$+$\frac{1}{4}$=$\frac{1}{2}$.
故選:B.
點(diǎn)評(píng) 本題考查了空間向量的共面的判斷與應(yīng)用及不等式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限或x軸正半軸上 | B. | 第二象限或x軸負(fù)半軸上 | ||
C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\frac{\sqrt{3}}{4}$ | B. | y=-$\frac{1}{2}$ | C. | y=-$\frac{\sqrt{3}}{2}$ | D. | y=-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com