【題目】如圖所示,在直三棱柱中, , , , ,點是的中點.
(1)求證: 平面;
(2)求異面直線與所成角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)要證平行于平面,設(shè)與的交點為,只要證即可,這由中位線定理可得;
(2)由(1)只要求得即可得異面直線所成角.
試題解析:
(1)證明:設(shè)CB1與C1B的交點為E,連接DE,又四邊形BCC1B1為正方形.
∵D是AB的中點,E是BC1的中點,∴DE∥AC1.
∵DE平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
(2)解:∵DE∥AC1,
∴∠CED為AC1與B1C所成的角.
在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,
∴cos∠CED==.
∴異面直線AC1與B1C所成角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,為的中點.
(1)若,求證:;
(2)若,且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品噸.
(1)求的值;
(2)若該產(chǎn)品的成本價格為萬元/噸,當銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是邊長為3的正方形, 平面, 平面, .
(1)證明:平面平面;
(2)在上是否存在一點,使平面將幾何體分成上下兩部分的體積比為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點、分別為邊、的中點,點是線段上的動點.
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,P為BC的中點,Q為線段上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號)。
①當時,S為四邊形
②當時,S為等腰梯形
③當時,S與的交點R滿足
④當時,S為六邊形
⑤當時,S的面積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)、分別為橢圓:的左、右兩個焦點.
(Ⅰ)若橢圓上的點到、兩點的距離之和等于6,寫出橢圓的方程和焦點坐標;
(Ⅱ)設(shè)點是(1)中所得橢圓上的動點,求線段的中點M的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com